These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38978453)
1. Three-Step Enzymatic Remodeling of Chitin into Bioactive Chitooligomers. Mészáros Z; Kulik N; Petrásková L; Bojarová P; Texidó M; Planas A; Křen V; Slámová K J Agric Food Chem; 2024 Jul; 72(28):15613-15623. PubMed ID: 38978453 [TBL] [Abstract][Full Text] [Related]
2. Potent Fungal Chitinase for the Bioconversion of Mycelial Waste. Liu T; Han H; Wang D; Guo X; Zhou Y; Fukamizo T; Yang Q J Agric Food Chem; 2020 May; 68(19):5384-5390. PubMed ID: 32275147 [No Abstract] [Full Text] [Related]
3. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi. Suresh PV; Anil Kumar PK Biodegradation; 2012 Jul; 23(4):597-607. PubMed ID: 22270691 [TBL] [Abstract][Full Text] [Related]
4. Heterologous Expression and Characterization of a Novel Chitinase (ChiEn1) from Coprinopsis cinerea and its Synergism in the Degradation of Chitin. Niu X; Zhou JS; Wang YX; Liu CC; Liu ZH; Yuan S J Agric Food Chem; 2017 Aug; 65(32):6943-6956. PubMed ID: 28721730 [TBL] [Abstract][Full Text] [Related]
5. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate. Su H; Gao L; Sun J; Mao X Food Chem; 2021 Sep; 355():129462. PubMed ID: 33848938 [TBL] [Abstract][Full Text] [Related]
6. A potent chitinase from Bacillus subtilis for the efficient bioconversion of chitin-containing wastes. Wang D; Li A; Han H; Liu T; Yang Q Int J Biol Macromol; 2018 Sep; 116():863-868. PubMed ID: 29782978 [TBL] [Abstract][Full Text] [Related]
7. Chitinase Chi1 from Myceliophthora thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization. Krolicka M; Hinz SWA; Koetsier MJ; Joosten R; Eggink G; van den Broek LAM; Boeriu CG J Agric Food Chem; 2018 Feb; 66(7):1658-1669. PubMed ID: 29359934 [TBL] [Abstract][Full Text] [Related]
8. Combining chitinase C and N-acetylhexosaminidase from Streptomyces coelicolor A3(2) provides an efficient way to synthesize N-acetylglucosamine from crystalline chitin. Nguyen-Thi N; Doucet N J Biotechnol; 2016 Feb; 220():25-32. PubMed ID: 26767320 [TBL] [Abstract][Full Text] [Related]
9. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Duo-Chuan LI; Chen S; Jing LU Mycopathologia; 2005 Feb; 159(2):223-9. PubMed ID: 15770448 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic production of diverse N-acetyl chitooligosaccharides employing a novel bifunctional chitinase and its engineered variants. Liu Y; Sun G; Liu J; Lou Y; Zhu J; Wang C Food Chem; 2024 Sep; 453():139675. PubMed ID: 38781901 [TBL] [Abstract][Full Text] [Related]
11. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. Chen W; Qu M; Zhou Y; Yang Q J Biol Chem; 2018 Feb; 293(8):2652-2660. PubMed ID: 29317504 [TBL] [Abstract][Full Text] [Related]
12. A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner. Bhuvanachandra B; Podile AR Int J Biol Macromol; 2020 Feb; 145():1-10. PubMed ID: 31857159 [TBL] [Abstract][Full Text] [Related]
13. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882 [TBL] [Abstract][Full Text] [Related]
14. The Modes of Action of ChiIII, a Chitinase from Mushroom Coprinopsis cinerea, Shift with Changes in the Length of GlcNAc Oligomers. Niu X; Liu CC; Xiong YJ; Yang MM; Ma F; Liu ZH; Yuan S J Agric Food Chem; 2016 Sep; 64(37):6958-68. PubMed ID: 27573573 [TBL] [Abstract][Full Text] [Related]
15. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Wang FP; Li Q; Zhou Y; Li MG; Xiao X Proteins; 2003 Dec; 53(4):908-16. PubMed ID: 14635132 [TBL] [Abstract][Full Text] [Related]
16. Designing a new chitinase with more chitin binding and antifungal activity. Matroodi S; Motallebi M; Zamani M; Moradyar M World J Microbiol Biotechnol; 2013 Aug; 29(8):1517-23. PubMed ID: 23515962 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS. Suginta W; Vongsuwan A; Songsiriritthigul C; Svasti J; Prinz H FEBS J; 2005 Jul; 272(13):3376-86. PubMed ID: 15978043 [TBL] [Abstract][Full Text] [Related]
18. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. van Munster JM; van der Kaaij RM; Dijkhuizen L; van der Maarel MJEC Microbiology (Reading); 2012 Aug; 158(Pt 8):2168-2179. PubMed ID: 22575895 [TBL] [Abstract][Full Text] [Related]
19. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. van Munster JM; Sanders P; ten Kate GA; Dijkhuizen L; van der Maarel MJ Carbohydr Res; 2015 Apr; 407():73-8. PubMed ID: 25723623 [TBL] [Abstract][Full Text] [Related]
20. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. Deng JJ; Shi D; Mao HH; Li ZW; Liang S; Ke Y; Luo XC Int J Biol Macromol; 2019 Aug; 134():113-121. PubMed ID: 31034902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]