These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38978519)
1. Optimising desired gain indices to maximise selection response. Joukhadar R; Li Y; Thistlethwaite R; Forrest KL; Tibbits JF; Trethowan R; Hayden MJ Front Plant Sci; 2024; 15():1337388. PubMed ID: 38978519 [TBL] [Abstract][Full Text] [Related]
2. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits. Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174 [TBL] [Abstract][Full Text] [Related]
3. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
4. Improvement of non-key traits in radiata pine breeding programme when long-term economic importance is uncertain. Li Y; Dungey H; Yanchuk A; Apiolaza LA PLoS One; 2017; 12(5):e0177806. PubMed ID: 28542558 [TBL] [Abstract][Full Text] [Related]
5. The statistical theory of linear selection indices from phenotypic to genomic selection. Cerón-Rojas JJ; Crossa J Crop Sci; 2022; 62(2):537-563. PubMed ID: 35911794 [TBL] [Abstract][Full Text] [Related]
6. Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Calus MP; de Haas Y; Pszczola M; Veerkamp RF Animal; 2013 Feb; 7(2):183-91. PubMed ID: 23031684 [TBL] [Abstract][Full Text] [Related]
7. Efficiency of a Constrained Linear Genomic Selection Index To Predict the Net Genetic Merit in Plants. Cerón-Rojas JJ; Crossa J G3 (Bethesda); 2019 Dec; 9(12):3981-3994. PubMed ID: 31570501 [TBL] [Abstract][Full Text] [Related]
8. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. González-Recio O; López-Paredes J; Ouatahar L; Charfeddine N; Ugarte E; Alenda R; Jiménez-Montero JA J Dairy Sci; 2020 Aug; 103(8):7210-7221. PubMed ID: 32475662 [TBL] [Abstract][Full Text] [Related]
9. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat. Ovenden B; Milgate A; Wade LJ; Rebetzke GJ; Holland JB G3 (Bethesda); 2018 May; 8(6):1909-1919. PubMed ID: 29661842 [TBL] [Abstract][Full Text] [Related]
10. Genomic selection for the improvement of meat quality in beef. Pimentel EC; König S J Anim Sci; 2012 Oct; 90(10):3418-26. PubMed ID: 22665643 [TBL] [Abstract][Full Text] [Related]
11. Genetic gains in forage sorghum for adaptive traits for non - conventional area through multi-trait-based stability selection methods. Behera PP; Singode A; Bhat BV; Ronda V; Borah N; Verma H; Gogoi LR; Borah JL; Majhi PK; Saharia N; Sarma RN Front Plant Sci; 2024; 15():1248663. PubMed ID: 38529058 [TBL] [Abstract][Full Text] [Related]
12. Optimising multistage dairy cattle breeding schemes including genomic selection using decorrelated or optimum selection indices. Börner V; Reinsch N Genet Sel Evol; 2012 Jan; 44(1):1. PubMed ID: 22252172 [TBL] [Abstract][Full Text] [Related]
13. Genomic prediction of reproduction traits for Merino sheep. Bolormaa S; Brown DJ; Swan AA; van der Werf JHJ; Hayes BJ; Daetwyler HD Anim Genet; 2017 Jun; 48(3):338-348. PubMed ID: 28211150 [TBL] [Abstract][Full Text] [Related]
14. The efficiency of genome-wide selection for genetic improvement of net merit. Togashi K; Lin CY; Yamazaki T J Anim Sci; 2011 Oct; 89(10):2972-80. PubMed ID: 21512116 [TBL] [Abstract][Full Text] [Related]
15. Gains through selection for grain yield in a winter wheat breeding program. Lozada DN; Ward BP; Carter AH PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696 [TBL] [Abstract][Full Text] [Related]
16. Training Population Design With the Use of Regional Fusarium Head Blight Nurseries to Predict Independent Breeding Lines for FHB Traits. Verges VL; Lyerly J; Dong Y; Van Sanford DA Front Plant Sci; 2020; 11():1083. PubMed ID: 32765564 [TBL] [Abstract][Full Text] [Related]
17. Application of selection index calculations to determine selection strategies in genomic breeding programs. König S; Swalve HH J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat. Lozada DN; Mason RE; Sarinelli JM; Brown-Guedira G BMC Genet; 2019 Nov; 20(1):82. PubMed ID: 31675927 [TBL] [Abstract][Full Text] [Related]
19. An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoria tritici blotch in winter wheat. Herter CP; Ebmeyer E; Kollers S; Korzun V; Miedaner T Theor Appl Genet; 2019 Aug; 132(8):2425-2437. PubMed ID: 31144000 [TBL] [Abstract][Full Text] [Related]
20. Combined Multistage Linear Genomic Selection Indices To Predict the Net Genetic Merit in Plant Breeding. Cerón-Rojas JJ; Crossa J G3 (Bethesda); 2020 Jun; 10(6):2087-2101. PubMed ID: 32312840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]