These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38978599)

  • 1. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.
    Chang TY; Waxman DJ
    Res Sq; 2024 Jun; ():. PubMed ID: 38978599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.
    Chang TY; Waxman DJ
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells.
    Peng T; Zhai Y; Atlasi Y; Ter Huurne M; Marks H; Stunnenberg HG; Megchelenbrink W
    Genome Biol; 2020 Sep; 21(1):243. PubMed ID: 32912294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction accuracy of regulatory elements from sequence varies by functional sequencing technique.
    Nowling RJ; Njoya K; Peters JG; Riehle MM
    Front Cell Infect Microbiol; 2023; 13():1182567. PubMed ID: 37600946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Quantitative Mapping of Enhancers in Rice by STARR-seq.
    Sun J; He N; Niu L; Huang Y; Shen W; Zhang Y; Li L; Hou C
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):140-153. PubMed ID: 31201999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries.
    Neumayr C; Pagani M; Stark A; Arnold CD
    Curr Protoc Mol Biol; 2019 Sep; 128(1):e105. PubMed ID: 31503413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STARR-seq - principles and applications.
    Muerdter F; Boryń ŁM; Arnold CD
    Genomics; 2015 Sep; 106(3):145-150. PubMed ID: 26072434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Genomic Discovery of Non-Coding Transcriptional Enhancers in the African Malaria Vector
    Holm I; Nardini L; Pain A; Bischoff E; Anderson CE; Zongo S; Guelbeogo WM; Sagnon N; Gohl DM; Nowling RJ; Vernick KD; Riehle MM
    Front Genet; 2021; 12():785934. PubMed ID: 35082832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.
    Liu Y; Yu S; Dhiman VK; Brunetti T; Eckart H; White KP
    Genome Biol; 2017 Nov; 18(1):219. PubMed ID: 29151363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of functional enhancers and their potential roles in pig breeding.
    Wu Y; Zhang Y; Liu H; Gao Y; Liu Y; Chen L; Liu L; Irwin DM; Hou C; Zhou Z; Zhang Y
    J Anim Sci Biotechnol; 2022 Jul; 13(1):75. PubMed ID: 35781353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research.
    Wang JL; Li Q; Zhan TZ
    Yi Chuan; 2024 Aug; 46(8):589-602. PubMed ID: 39140141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of CAR Agonist Ligand TCPOBOP on Mouse Liver Chromatin Accessibility.
    Lodato NJ; Rampersaud A; Waxman DJ
    Toxicol Sci; 2018 Jul; 164(1):115-128. PubMed ID: 29617930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Analysis of Maize Enhancer Regulatory Elements Using ATAC-STARR-seq.
    Marand AP
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread Epigenetic Changes to the Enhancer Landscape of Mouse Liver Induced by a Specific Xenobiotic Agonist Ligand of the Nuclear Receptor CAR.
    Rampersaud A; Lodato NJ; Shin A; Waxman DJ
    Toxicol Sci; 2019 Oct; 171(2):315-338. PubMed ID: 31236583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high efficient promoter finding method based on transient transfection.
    Lu Y; Li Q; Zheng K; Fu C; Jiang C; Zhou D; Xia C; Ma S
    Gene X; 2019 Jun; 2():100008. PubMed ID: 32550544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unbiased AAV-STARR-seq screen revealing the enhancer activity map of genomic regions in the mouse brain in vivo.
    Chan YC; Kienle E; Oti M; Di Liddo A; Mendez-Lago M; Aschauer DF; Peter M; Pagani M; Arnold C; Vonderheit A; Schön C; Kreuz S; Stark A; Rumpel S
    Sci Rep; 2023 Apr; 13(1):6745. PubMed ID: 37185990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide prediction of activating regulatory elements in rice by combining STARR-seq with FACS.
    Tian W; Huang X; Ouyang X
    Plant Biotechnol J; 2022 Dec; 20(12):2284-2297. PubMed ID: 36028476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Highly Repetitive Enhancers with Long-range Regulation Potential in Barley via STARR-seq.
    Zhou W; Shi H; Wang Z; Huang Y; Ni L; Chen X; Liu Y; Li H; Li C; Liu Y
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39167800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underlying causes for prevalent false positives and false negatives in STARR-seq data.
    Ni P; Wu S; Su Z
    NAR Genom Bioinform; 2023 Sep; 5(3):lqad085. PubMed ID: 37745976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells.
    Barakat TS; Halbritter F; Zhang M; Rendeiro AF; Perenthaler E; Bock C; Chambers I
    Cell Stem Cell; 2018 Aug; 23(2):276-288.e8. PubMed ID: 30033119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.