These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38978614)

  • 1. Sensing nanoscale electromagnetic forces when the heat is on.
    Potma EO
    Natl Sci Rev; 2024 Jul; 11(7):nwae184. PubMed ID: 38978614
    [No Abstract]   [Full Text] [Related]  

  • 2. Dispersion forces between ultracold atoms and a carbon nanotube.
    Schneeweiss P; Gierling M; Visanescu G; Kern DP; Judd TE; Günther A; Fortágh J
    Nat Nanotechnol; 2012 Aug; 7(8):515-9. PubMed ID: 22706699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative heat transfer at the nanoscale: experimental trends and challenges.
    Lucchesi C; Vaillon R; Chapuis PO
    Nanoscale Horiz; 2021 Mar; 6(3):201-208. PubMed ID: 33533775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct temperature mapping of nanoscale plasmonic devices.
    Desiatov B; Goykhman I; Levy U
    Nano Lett; 2014 Feb; 14(2):648-52. PubMed ID: 24422562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum precision measurement of two-dimensional forces with 10
    Guo X; Yu Z; Wei F; Jin S; Chen X; Li X; Zhang X; Zhou X
    Sci Bull (Beijing); 2022 Nov; 67(22):2291-2297. PubMed ID: 36546219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical tunable plasmonic nano-aggregations for surface-enhanced Raman scattering.
    Chen L; Liu W; Shen D; Liu Y; Zhou Z; Liang X; Wan W
    Nanoscale; 2019 Jul; 11(28):13558-13566. PubMed ID: 31290520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons.
    Batson PE; Reyes-Coronado A; Barrera RG; Rivacoba A; Echenique PM; Aizpurua J
    Nano Lett; 2011 Aug; 11(8):3388-93. PubMed ID: 21770372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing and controlling photothermal heat generation in plasmonic nanostructures.
    Coppens ZJ; Li W; Walker DG; Valentine JG
    Nano Lett; 2013 Mar; 13(3):1023-8. PubMed ID: 23437919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatics at the nanoscale.
    Walker DA; Kowalczyk B; de la Cruz MO; Grzybowski BA
    Nanoscale; 2011 Apr; 3(4):1316-44. PubMed ID: 21321754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart Electromagnetic Thermites: GO/rGO Nanoscale Thermite Composites with Thermally Switchable Microwave Ignitability.
    Barkley SJ; Lawrence AR; Zohair M; Smithhisler OL; Pint CL; Michael JB; Sippel TR
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39678-39688. PubMed ID: 34232011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent Directional Current at Equilibrium in Nonreciprocal Many-Body Near Field Electromagnetic Heat Transfer.
    Zhu L; Fan S
    Phys Rev Lett; 2016 Sep; 117(13):134303. PubMed ID: 27715122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and Anisotropic Mechanochromism of Polydiacetylene at Nanoscale.
    Juhasz L; Ortuso RD; Sugihara K
    Nano Lett; 2021 Jan; 21(1):543-549. PubMed ID: 33284635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces.
    Giri A; Walton SG; Tomko J; Bhatt N; Johnson MJ; Boris DR; Lu G; Caldwell JD; Prezhdo OV; Hopkins PE
    ACS Nano; 2023 Aug; 17(15):14253-14282. PubMed ID: 37459320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation.
    Anyika T; Hong I; Ndukaife JC
    Nano Lett; 2023 Dec; 23(24):11416-11423. PubMed ID: 37987748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Flow State of Circulating Cooling Water for the Industrial Heat Exchange Tube in the Electromagnetic Anti-Fouling Process.
    Yan L; Qi X; Han X; Wang J; He F
    ACS Omega; 2021 Nov; 6(43):28515-28527. PubMed ID: 34746547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Sensing Using Electromagnetic Waves for Inspection of Defects in Rock Bolts.
    Yu JD; Lee JS
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.
    Ito K; Nishikawa K; Miura A; Toshiyoshi H; Iizuka H
    Nano Lett; 2017 Jul; 17(7):4347-4353. PubMed ID: 28594564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.