These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38978666)

  • 21. A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.
    Moatti M; Chevret S; Zohar S; Rosenberger WF
    Methods Inf Med; 2016; 55(1):4-13. PubMed ID: 26404511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining a Bayesian predictive power stopping rule for futility in a non-inferiority trial with binary outcomes.
    Heath A; Offringa M; Pechlivanoglou P; Rios JD; Klassen TP; Poonai N; Pullenayegum E;
    Contemp Clin Trials Commun; 2020 Jun; 18():100561. PubMed ID: 32300671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing Bayesian early stopping boundaries for phase II clinical trials.
    Jiang L; Yan F; Thall PF; Huang X
    Pharm Stat; 2020 Nov; 19(6):928-939. PubMed ID: 32720462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Audit of Interim Analyses of Randomized Controlled Trials (RCTs) Published in Three High Impact Factor Medical Journals Over a Seven- year Period (2012-2018).
    Bose D; Ravi R; Gogtay N; Thatte UM; Borse T
    Rev Recent Clin Trials; 2021; 16(4):403-408. PubMed ID: 34259150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An analysis of protocols and publications suggested that most discontinuations of clinical trials were not based on preplanned interim analyses or stopping rules.
    Stegert M; Kasenda B; von Elm E; You JJ; Blümle A; Tomonaga Y; Saccilotto R; Amstutz A; Bengough T; Briel M;
    J Clin Epidemiol; 2016 Jan; 69():152-60. PubMed ID: 26361993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A randomized Bayesian optimal phase II design with binary endpoint.
    Ding Y
    J Biopharm Stat; 2023 Mar; 33(2):151-166. PubMed ID: 35793222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Information time scales for interim analyses of randomized clinical trials.
    Freidlin B; Othus M; Korn EL
    Clin Trials; 2016 Aug; 13(4):391-9. PubMed ID: 27136947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian decision-theoretic group sequential clinical trial design based on a quadratic loss function: a frequentist evaluation.
    Lewis RJ; Lipsky AM; Berry DA
    Clin Trials; 2007; 4(1):5-14. PubMed ID: 17327241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive designs in critical care trials: a simulation study.
    Li W; Cornelius V; Finfer S; Venkatesh B; Billot L
    BMC Med Res Methodol; 2023 Oct; 23(1):236. PubMed ID: 37853343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian adaptive designs for multi-arm trials: an orthopaedic case study.
    Ryan EG; Lamb SE; Williamson E; Gates S
    Trials; 2020 Jan; 21(1):83. PubMed ID: 31937341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian adaptive design approach for stepped-wedge cluster randomized trials.
    Wang J; Cao J; Ahn C; Zhang S
    Clin Trials; 2024 Aug; 21(4):440-450. PubMed ID: 38240270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data.
    Sambucini V
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Bayesian and frequentist group-sequential clinical trial designs.
    Stallard N; Todd S; Ryan EG; Gates S
    BMC Med Res Methodol; 2020 Jan; 20(1):4. PubMed ID: 31910813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian interim analysis for prospective randomized studies: reanalysis of the acute myeloid leukemia HOVON 132 clinical trial.
    van der Maas NG; Versluis J; Nasserinejad K; van Rosmalen J; Pabst T; Maertens J; Breems D; Manz M; Cloos J; Ossenkoppele GJ; Floisand Y; Gradowska P; Löwenberg B; Huls G; Postmus D; Pignatti F; Cornelissen JJ
    Blood Cancer J; 2024 Mar; 14(1):56. PubMed ID: 38538587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal timing for an accelerated interim futility analysis incorporating real world data.
    Haine LMF; Murray TA; Koopmeiners JS
    Contemp Clin Trials; 2024 May; 140():107489. PubMed ID: 38461938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials.
    Saville BR; Connor JT; Ayers GD; Alvarez J
    Clin Trials; 2014 Aug; 11(4):485-493. PubMed ID: 24872363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Futility interim monitoring with control of type I and II error probabilities using the interim Z-value or confidence limit.
    Lachin JM
    Clin Trials; 2009 Dec; 6(6):565-73. PubMed ID: 19933716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advantages of Bayesian monitoring methods in deciding whether and when to stop a clinical trial: an example of a neonatal cooling trial.
    Pedroza C; Tyson JE; Das A; Laptook A; Bell EF; Shankaran S;
    Trials; 2016 Jul; 17(1):335. PubMed ID: 27450203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal futility stopping boundaries for binary endpoints.
    Freitag MM; Li X; Rauch G
    BMC Med Res Methodol; 2024 Mar; 24(1):80. PubMed ID: 38539108
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.