These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38978695)

  • 1. Favorable efficacy and reduced acute neurotoxicity by antisense oligonucleotides with 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine.
    Matsubayashi T; Yoshioka K; Lei Mon SS; Katsuyama M; Jia C; Yamaguchi T; Hara RI; Nagata T; Nakagawa O; Obika S; Yokota T
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102161. PubMed ID: 38978695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2',4'-BNA/LNA with 9-(2-Aminoethoxy)-1,3-diaza-2-oxophenoxazine Efficiently Forms Duplexes and Has Enhanced Enzymatic Resistance*.
    Kishimoto Y; Nakagawa O; Fujii A; Yoshioka K; Nagata T; Yokota T; Hari Y; Obika S
    Chemistry; 2021 Feb; 27(7):2427-2438. PubMed ID: 33280173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and thermal stabilities of oligonucleotides containing 2'-O,4'-C-methylene bridged nucleic acid with a phenoxazine base.
    Kishimoto Y; Fujii A; Nakagawa O; Nagata T; Yokota T; Hari Y; Obika S
    Org Biomol Chem; 2017 Oct; 15(38):8145-8152. PubMed ID: 28920119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Favorable efficacy and reduced acute neurotoxicity by antisense oligonucleotides with 2',4' -BNA/LNA with 9-(aminoethoxy)phenoxazine.
    Matsubayashi T; Yoshioka K; Lei Mon SS; Katsuyama M; Jia C; Yamaguchi T; Hara RI; Nagata T; Nakagawa O; Obika S; Yokota T
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102182. PubMed ID: 38590918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides.
    Dieckmann A; Hagedorn PH; Burki Y; Brügmann C; Berrera M; Ebeling M; Singer T; Schuler F
    Mol Ther Nucleic Acids; 2018 Mar; 10():45-54. PubMed ID: 29499955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Silencing by 2',4'-BNA(NC)-Based Short Antisense Oligonucleotides Compared to 2',4'-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors.
    Yamamoto T; Yasuhara H; Wada F; Harada-Shiba M; Imanishi T; Obika S
    J Nucleic Acids; 2012; 2012():707323. PubMed ID: 23056920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus.
    Okamoto S; Echigoya Y; Tago A; Segawa T; Sato Y; Itou T
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intratracheal administration of locked nucleic acid containing antisense oligonucleotides induced gene silencing and an immune-stimulatory effect in the murine lung.
    Uemura Y; Hagiwara K; Kobayashi K
    PLoS One; 2017; 12(11):e0187286. PubMed ID: 29107995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change of intracellular calcium level causes acute neurotoxicity by antisense oligonucleotides via CSF route.
    Jia C; Lei Mon SS; Yang Y; Katsuyama M; Yoshida-Tanaka K; Nagata T; Yoshioka K; Yokota T
    Mol Ther Nucleic Acids; 2023 Mar; 31():182-196. PubMed ID: 36700050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configuration of the 5'-methyl group modulates the biophysical and biological properties of locked nucleic acid (LNA) oligonucleotides.
    Seth PP; Allerson CR; Siwkowski A; Vasquez G; Berdeja A; Migawa MT; Gaus H; Prakash TP; Bhat B; Swayze EE
    J Med Chem; 2010 Dec; 53(23):8309-18. PubMed ID: 21058707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA.
    Pendergraff HM; Krishnamurthy PM; Debacker AJ; Moazami MP; Sharma VK; Niitsoo L; Yu Y; Tan YN; Haitchi HM; Watts JK
    Mol Ther Nucleic Acids; 2017 Sep; 8():158-168. PubMed ID: 28918018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense oligonucleotides containing conformationally constrained 2',4'-(N-methoxy)aminomethylene and 2',4'-aminooxymethylene and 2'-O,4'-C-aminomethylene bridged nucleoside analogues show improved potency in animal models.
    Prakash TP; Siwkowski A; Allerson CR; Migawa MT; Lee S; Gaus HJ; Black C; Seth PP; Swayze EE; Bhat B
    J Med Chem; 2010 Feb; 53(4):1636-50. PubMed ID: 20108935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug discovery and development scheme for liver-targeting bridged nucleic acid antisense oligonucleotides.
    Wada F; Yamamoto T; Kobayashi T; Tachibana K; Ito KR; Hamasaki M; Kayaba Y; Terada C; Yamayoshi A; Obika S; Harada-Shiba M
    Mol Ther Nucleic Acids; 2021 Dec; 26():957-969. PubMed ID: 34760338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.
    Hori SI; Mitsuoka Y; Kugimiya A
    Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice.
    Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP
    Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intratracheally administered LNA gapmer antisense oligonucleotides induce robust gene silencing in mouse lung fibroblasts.
    Shin M; Chan IL; Cao Y; Gruntman AM; Lee J; Sousa J; Rodríguez TC; Echeverria D; Devi G; Debacker AJ; Moazami MP; Krishnamurthy PM; Rembetsy-Brown JM; Kelly K; Yukselen O; Donnard E; Parsons TJ; Khvorova A; Sontheimer EJ; Maehr R; Garber M; Watts JK
    Nucleic Acids Res; 2022 Aug; 50(15):8418-8430. PubMed ID: 35920332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity.
    Kashyap AS; Thelemann T; Klar R; Kallert SM; Festag J; Buchi M; Hinterwimmer L; Schell M; Michel S; Jaschinski F; Zippelius A
    J Immunother Cancer; 2019 Mar; 7(1):67. PubMed ID: 30871609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation.
    Hvam ML; Cai Y; Dagnæs-Hansen F; Nielsen JS; Wengel J; Kjems J; Howard KA
    Mol Ther; 2017 Jul; 25(7):1710-1717. PubMed ID: 28641935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of gapmer antisense oligonucleotide with deoxyribonucleic guanidine (DNG) modifications.
    Kojima N; Shrestha AR; Akisawa T; Piao H; Kizawa H; Ohmiya Y; Kurita R
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):258-269. PubMed ID: 31556356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.