These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38979079)

  • 1. Formation of the pyruvoyl-dependent proline reductase Prd from
    Behlendorf C; Diwo M; Neumann-Schaal M; Fuchs M; Körner D; Jänsch L; Faber F; Blankenfeldt W
    PNAS Nexus; 2024 Jul; 3(7):pgae249. PubMed ID: 38979079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
    Jackson S; Calos M; Myers A; Self WT
    J Bacteriol; 2006 Dec; 188(24):8487-95. PubMed ID: 17041035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
    Johnstone MA; Self WT
    J Bacteriol; 2022 Aug; 204(8):e0022922. PubMed ID: 35862761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing metabolic drivers of
    Bustin KA; Abbas A; Wang X; Abt MC; Zackular JP; Matthews ML
    Front Pharmacol; 2023; 14():1074619. PubMed ID: 36778002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein.
    Kabisch UC; Gräntzdörffer A; Schierhorn A; Rücknagel KP; Andreesen JR; Pich A
    J Biol Chem; 1999 Mar; 274(13):8445-54. PubMed ID: 10085076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Stickland Reaction Precursor
    Reed AD; Fletcher JR; Huang YY; Thanissery R; Rivera AJ; Parsons RJ; Stewart AK; Kountz DJ; Shen A; Balskus EP; Theriot CM
    mSphere; 2022 Apr; 7(2):e0092621. PubMed ID: 35350846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue.
    Bednarski B; Andreesen JR; Pich A
    Eur J Biochem; 2001 Jun; 268(12):3538-44. PubMed ID: 11422384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proline-dependent regulation of Clostridium difficile Stickland metabolism.
    Bouillaut L; Self WT; Sonenshein AL
    J Bacteriol; 2013 Feb; 195(4):844-54. PubMed ID: 23222730
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Huang X; Johnson AE; Auchtung TA; McCullough HC; Lerma AI; Haidacher SJ; Hoch KM; Horvath TD; Haag AM; Auchtung JM
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation.
    Lopez CA; Beavers WN; Weiss A; Knippel RJ; Zackular JP; Chazin W; Skaar EP
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Reprogramming of
    Hofmann JD; Otto A; Berges M; Biedendieck R; Michel AM; Becher D; Jahn D; Neumann-Schaal M
    Front Microbiol; 2018; 9():1970. PubMed ID: 30186274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.
    Gencic S; Grahame DA
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of the global regulator Rex in control of NAD
    Bouillaut L; Dubois T; Francis MB; Daou N; Monot M; Sorg JA; Sonenshein AL; Dupuy B
    Mol Microbiol; 2019 Jun; 111(6):1671-1688. PubMed ID: 30882947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ebselen Not Only Inhibits Clostridioides difficile Toxins but Displays Redox-Associated Cellular Killing.
    Marreddy RKR; Olaitan AO; May JN; Dong M; Hurdle JG
    Microbiol Spectr; 2021 Oct; 9(2):e0044821. PubMed ID: 34468187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism the Difficile Way: The Key to the Success of the Pathogen
    Neumann-Schaal M; Jahn D; Schmidt-Hohagen K
    Front Microbiol; 2019; 10():219. PubMed ID: 30828322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridioides difficile proline fermentation in response to commensal clostridia.
    Lopez CA; McNeely TP; Nurmakova K; Beavers WN; Skaar EP
    Anaerobe; 2020 Jun; 63():102210. PubMed ID: 32422411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations.
    Pavao A; Graham M; Arrieta-Ortiz ML; Immanuel SRC; Baliga NS; Bry L
    Anaerobe; 2022 Aug; 76():102600. PubMed ID: 35709938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function.
    Cao S; Yao J; Shah V
    J Biol Chem; 2003 Feb; 278(8):5894-901. PubMed ID: 12488320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human α-Defensin-5 Efficiently Neutralizes
    Korbmacher M; Fischer S; Landenberger M; Papatheodorou P; Aktories K; Barth H
    Front Pharmacol; 2020; 11():1204. PubMed ID: 32903430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central
    Cersosimo LM; Graham M; Monestier A; Pavao A; Worley JN; Peltier J; Dupuy B; Bry L
    bioRxiv; 2023 Aug; ():. PubMed ID: 37292778
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.