These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38979256)

  • 1. An intricate balancing act: Upstream and downstream frameshift co-regulatory elements.
    Lee S; Yan S; Dey A; Laederach A; Schlick T
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of coronavirus frameshifting elements: Competing stem networks explain conservation and variability.
    Yan S; Zhu Q; Hohl J; Dong A; Schlick T
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2221324120. PubMed ID: 37155888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To knot or not to knot: Multiple conformations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Dey A; Jain S; Yan S; Laederach A
    bioRxiv; 2021 Jul; ():. PubMed ID: 33821274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element.
    Schlick T; Zhu Q; Dey A; Jain S; Yan S; Laederach A
    J Am Chem Soc; 2021 Aug; 143(30):11404-11422. PubMed ID: 34283611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression.
    Yan S; Zhu Q; Jain S; Schlick T
    Res Sq; 2022 Jan; ():. PubMed ID: 35018371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function.
    Pekarek L; Zimmer MM; Gribling-Burrer AS; Buck S; Smyth R; Caliskan N
    Nucleic Acids Res; 2023 Jan; 51(2):728-743. PubMed ID: 36537211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression.
    Yan S; Zhu Q; Jain S; Schlick T
    Nat Commun; 2022 Jul; 13(1):4284. PubMed ID: 35879278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Jain S; Yan S
    Biophys J; 2021 Mar; 120(6):1040-1053. PubMed ID: 33096082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Altering Mutations of the SARS-CoV-2 Frame Shifting RNA Element.
    Schlick T; Zhu Q; Jain S; Yan S
    bioRxiv; 2020 Aug; ():. PubMed ID: 32869017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus.
    Marczinke B; Fisher R; Vidakovic M; Bloys AJ; Brierley I
    J Mol Biol; 1998 Nov; 284(2):205-25. PubMed ID: 9813113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.
    Su MC; Chang CT; Chu CH; Tsai CH; Chang KY
    Nucleic Acids Res; 2005; 33(13):4265-75. PubMed ID: 16055920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
    Peterson JM; Becker ST; O'Leary CA; Juneja P; Yang Y; Moss WN
    Biochemistry; 2024 May; 63(10):1287-1296. PubMed ID: 38727003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal.
    Brierley I; Rolley NJ; Jenner AJ; Inglis SC
    J Mol Biol; 1991 Aug; 220(4):889-902. PubMed ID: 1880803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.
    Cho CP; Lin SC; Chou MY; Hsu HT; Chang KY
    PLoS One; 2013; 8(4):e62283. PubMed ID: 23638024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting.
    Napthine S; Liphardt J; Bloys A; Routledge S; Brierley I
    J Mol Biol; 1999 May; 288(3):305-20. PubMed ID: 10329144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: Implications to alternative conformations and their statistical structural analyses.
    Dey A; Yan S; Schlick T; Laederach A
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tying the knot: Unraveling the intricacies of the coronavirus frameshift pseudoknot.
    Trinity L; Stege U; Jabbari H
    PLoS Comput Biol; 2024 May; 20(5):e1011787. PubMed ID: 38713726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency.
    Kontos H; Napthine S; Brierley I
    Mol Cell Biol; 2001 Dec; 21(24):8657-70. PubMed ID: 11713298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting.
    Liphardt J; Napthine S; Kontos H; Brierley I
    J Mol Biol; 1999 May; 288(3):321-35. PubMed ID: 10329145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.