These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Portable, high speed blood flow measurements enabled by long wavelength, interferometric diffuse correlation spectroscopy (LW-iDCS). Robinson MB; Renna M; Ozana N; Martin AN; Otic N; Carp SA; Franceschini MA Sci Rep; 2023 May; 13(1):8803. PubMed ID: 37258644 [TBL] [Abstract][Full Text] [Related]
3. Interferometric diffuse correlation spectroscopy improves measurements at long source-detector separation and low photon count rate. Robinson M; Boas D; Sakadžic S; Franceschini MA; Carp S J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 33000571 [TBL] [Abstract][Full Text] [Related]
4. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related]
5. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related]
6. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries. Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721 [TBL] [Abstract][Full Text] [Related]
7. Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy. Biswas A; Mohammad PPS; Moka S; Takshi A; Parthasarathy AB Front Neuroergon; 2023; 4():1288922. PubMed ID: 38234484 [TBL] [Abstract][Full Text] [Related]
8. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function. Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681 [TBL] [Abstract][Full Text] [Related]
9. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method. Wang Q; Pan M; Zang Z; Li DD J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935 [TBL] [Abstract][Full Text] [Related]
10. Time-domain diffuse correlation spectroscopy at large source detector separation for cerebral blood flow recovery. Mogharari N; Wojtkiewicz S; Borycki D; Liebert A; Kacprzak M Biomed Opt Express; 2024 Jul; 15(7):4330-4344. PubMed ID: 39022555 [TBL] [Abstract][Full Text] [Related]
11. Superconducting nanowire single-photon sensing of cerebral blood flow. Ozana N; Zavriyev AI; Mazumder D; Robinson M; Kaya K; Blackwell M; Carp SA; Franceschini MA Neurophotonics; 2021 Jul; 8(3):035006. PubMed ID: 34423069 [No Abstract] [Full Text] [Related]
12. Diffuse Correlation Spectroscopy Beyond the Water Peak Enabled by Cross-Correlation of the Signals From InGaAs/InP Single Photon Detectors. Robinson MB; Renna M; Ozana NN; Peruch A; Sakadzic S; Blackwell ML; Richardson JM; Aull BF; Carp SA; Franceschini MA IEEE Trans Biomed Eng; 2022 Jun; 69(6):1943-1953. PubMed ID: 34847015 [TBL] [Abstract][Full Text] [Related]
13. Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo. Samaei S; Sawosz P; Kacprzak M; Pastuszak Ż; Borycki D; Liebert A Sci Rep; 2021 Jan; 11(1):1817. PubMed ID: 33469124 [TBL] [Abstract][Full Text] [Related]
14. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719 [No Abstract] [Full Text] [Related]
15. Functional Time Domain Diffuse Correlation Spectroscopy. Ozana N; Lue N; Renna M; Robinson MB; Martin A; Zavriyev AI; Carr B; Mazumder D; Blackwell MH; Franceschini MA; Carp SA Front Neurosci; 2022; 16():932119. PubMed ID: 35979338 [TBL] [Abstract][Full Text] [Related]
16. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS). Robinson MB; Carp SA; Peruch A; Boas DA; Franceschini MA; Sakadžić S Biomed Opt Express; 2020 Jun; 11(6):3071-3090. PubMed ID: 32637242 [TBL] [Abstract][Full Text] [Related]
17. Diffuse correlation spectroscopy: current status and future outlook. Carp SA; Robinson MB; Franceschini MA Neurophotonics; 2023 Jan; 10(1):013509. PubMed ID: 36704720 [TBL] [Abstract][Full Text] [Related]
19. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements. He L; Lin Y; Shang Y; Shelton BJ; Yu G J Biomed Opt; 2013 Mar; 18(3):037001. PubMed ID: 23455963 [TBL] [Abstract][Full Text] [Related]
20. Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy. Biswas A; Parthasarathy AB IEEE Access; 2022; 10():129754-129762. PubMed ID: 36644002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]