These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38980151)

  • 1.
    Tam YL; Cameron S; Preston A; Cowley L
    Microb Genom; 2024 Jul; 10(7):. PubMed ID: 38980151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.
    Jaillard M; Lima L; Tournoud M; Mahé P; van Belkum A; Lacroix V; Jacob L
    PLoS Genet; 2018 Nov; 14(11):e1007758. PubMed ID: 30419019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.
    Weigand MR; Peng Y; Loparev V; Batra D; Bowden KE; Burroughs M; Cassiday PK; Davis JK; Johnson T; Juieng P; Knipe K; Mathis MH; Pruitt AM; Rowe L; Sheth M; Tondella ML; Williams MM
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hogwash: three methods for genome-wide association studies in bacteria.
    Saund K; Snitkin ES
    Microb Genom; 2020 Nov; 6(11):. PubMed ID: 33206035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. kGWASflow: a modular, flexible, and reproducible Snakemake workflow for k-mers-based GWAS.
    Corut AK; Wallace JG
    G3 (Bethesda); 2023 Dec; 14(1):. PubMed ID: 37976215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced ambiguity and improved interpretability of bacterial genome-wide associations using gene-cluster-centric
    Sommer H; Djamalova D; Galardini M
    Microb Genom; 2023 Nov; 9(11):. PubMed ID: 37934071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying genetic variants underlying phenotypic variation in plants without complete genomes.
    Voichek Y; Weigel D
    Nat Genet; 2020 May; 52(5):534-540. PubMed ID: 32284578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide detection of spontaneous chromosomal rearrangements in bacteria.
    Sun S; Ke R; Hughes D; Nilsson M; Andersson DI
    PLoS One; 2012; 7(8):e42639. PubMed ID: 22880062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. prewas: data pre-processing for more informative bacterial GWAS.
    Saund K; Lapp Z; Thiede SN; Pirani A; Snitkin ES
    Microb Genom; 2020 May; 6(5):. PubMed ID: 32310745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences.
    Wang D; Wang L
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):291. PubMed ID: 30367596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity.
    Mappley LJ; Black ML; AbuOun M; Darby AC; Woodward MJ; Parkhill J; Turner AK; Bellgard MI; La T; Phillips ND; La Ragione RM; Hampson DJ
    BMC Genomics; 2012 Sep; 13():454. PubMed ID: 22947175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the Invisible: The Sequences Causal of Genome Size Differences in Eyebrights (
    Becher H; Sampson J; Twyford AD
    Front Plant Sci; 2022; 13():818410. PubMed ID: 35968114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bGWAS: an R package to perform Bayesian genome wide association studies.
    Mounier N; Kutalik Z
    Bioinformatics; 2020 Aug; 36(15):4374-4376. PubMed ID: 32470106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rearrangement analysis of multiple bacterial genomes.
    Noureen M; Tada I; Kawashima T; Arita M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):631. PubMed ID: 31881830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PaReBrick: PArallel REarrangements and BReaks identification toolkit.
    Zabelkin A; Yakovleva Y; Bochkareva O; Alexeev N
    Bioinformatics; 2022 Jan; 38(2):357-363. PubMed ID: 34601581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient association mapping from k-mers-An application in finding sex-specific sequences.
    Mehrab Z; Mobin J; Tahmid IA; Rahman A
    PLoS One; 2021; 16(1):e0245058. PubMed ID: 33411830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement.
    Darling AE; Mau B; Perna NT
    PLoS One; 2010 Jun; 5(6):e11147. PubMed ID: 20593022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative genetics: pan-genomes, SVs, and k-mers for GWAS.
    Gupta PK
    Trends Genet; 2021 Oct; 37(10):868-871. PubMed ID: 34183185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.