These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks. Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457 [TBL] [Abstract][Full Text] [Related]
5. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data. Xu J; Zhang A; Liu F; Zhang X Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004161 [TBL] [Abstract][Full Text] [Related]
6. scTIGER: A Deep-Learning Method for Inferring Gene Regulatory Networks from Case versus Control scRNA-seq Datasets. Dautle M; Zhang S; Chen Y Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686146 [TBL] [Abstract][Full Text] [Related]
7. A gene regulatory network inference model based on pseudo-siamese network. Wang Q; Guo M; Chen J; Duan R BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776 [TBL] [Abstract][Full Text] [Related]
8. dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data. Xu Y; Chen J; Lyu A; Cheung WK; Zhang L Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168811 [TBL] [Abstract][Full Text] [Related]
9. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data. Chen G; Liu ZP Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023 [TBL] [Abstract][Full Text] [Related]
12. Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding. Gan Y; Yu J; Xu G; Yan C; Zou G Bioinformatics; 2024 May; 40(5):. PubMed ID: 38810116 [TBL] [Abstract][Full Text] [Related]
13. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks. Shrivastava H; Zhang X; Song L; Aluru S J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715 [TBL] [Abstract][Full Text] [Related]
14. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796 [TBL] [Abstract][Full Text] [Related]
15. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
16. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks. Zinati Y; Takiddeen A; Emad A Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843 [TBL] [Abstract][Full Text] [Related]
17. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Aubin-Frankowski PC; Vert JP Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066 [TBL] [Abstract][Full Text] [Related]
18. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC. Kumar N; Mishra B; Athar M; Mukhtar S Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625 [TBL] [Abstract][Full Text] [Related]
19. Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN. Gan Y; Hu X; Zou G; Yan C; Xu G Front Oncol; 2022; 12():899825. PubMed ID: 35692809 [TBL] [Abstract][Full Text] [Related]
20. Deep learning of gene relationships from single cell time-course expression data. Yuan Y; Bar-Joseph Z Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]