These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 38980373)

  • 21. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
    Huang J; Zheng J; Yuan H; McGinnis K
    BMC Plant Biol; 2018 Jun; 18(1):111. PubMed ID: 29879919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.
    Ma Y; Pei Y
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets.
    Zhang S; Pyne S; Pietrzak S; Halberg S; McCalla SG; Siahpirani AF; Sridharan R; Roy S
    Nat Commun; 2023 May; 14(1):3064. PubMed ID: 37244909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data.
    Chen J; Cheong C; Lan L; Zhou X; Liu J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34424948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data.
    Li Y; Ma A; Wang Y; Guo Q; Wang C; Fu H; Liu B; Ma Q
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39082647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data.
    Shu H; Ding F; Zhou J; Xue Y; Zhao D; Zeng J; Ma J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. COFFEE: consensus single cell-type specific inference for gene regulatory networks.
    K Lodi M; Chernikov A; Ghosh P
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39311699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference.
    Li S; Liu Y; Shen LC; Yan H; Song J; Yu DJ
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38261340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inference of Gene Regulatory Networks Based on Multi-view Hierarchical Hypergraphs.
    Wu S; Jin K; Tang M; Xia Y; Gao W
    Interdiscip Sci; 2024 Jun; 16(2):318-332. PubMed ID: 38342857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. scBoolSeq: Linking scRNA-seq statistics and Boolean dynamics.
    Magaña-López G; Calzone L; Zinovyev A; Paulevé L
    PLoS Comput Biol; 2024 Jul; 20(7):e1011620. PubMed ID: 38976751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging.
    Luo Q; Yu Y; Lan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34962260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning.
    Lin Z; Ou-Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BootCellNet, a resampling-based procedure, promotes unsupervised identification of cell populations via robust inference of gene regulatory networks.
    Kumagai Y
    PLoS Comput Biol; 2024 Sep; 20(9):e1012480. PubMed ID: 39348410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Effective Biclustering-Based Framework for Identifying Cell Subpopulations From scRNA-seq Data.
    Fang Q; Su D; Ng W; Feng J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2249-2260. PubMed ID: 32167906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scDLC: a deep learning framework to classify large sample single-cell RNA-seq data.
    Zhou Y; Peng M; Yang B; Tong T; Zhang B; Tang N
    BMC Genomics; 2022 Jul; 23(1):504. PubMed ID: 35831808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MultiSC: a deep learning pipeline for analyzing multiomics single-cell data.
    Lin X; Jiang S; Gao L; Wei Z; Wang J
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39376034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring Novel Cells in Single-Cell RNA-Sequencing Data.
    Li Z; Yang P
    Methods Mol Biol; 2024; 2812():143-154. PubMed ID: 39068360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.