BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3898065)

  • 21. Expression and biotinylation of a mutant of the transcarboxylase carrier protein from Propioni shermanii.
    Jank MM; Bokorny S; Röhm K; Berger S
    Protein Expr Purif; 1999 Oct; 17(1):123-7. PubMed ID: 10497077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acid sequence of the biotinyl subunit from transcarboxylase.
    Maloy WL; Bowien BU; Zwolinski GK; Kumar KG; Wood HG; Ericsson LH; Walsh KA
    J Biol Chem; 1979 Nov; 254(22):11615-22. PubMed ID: 40985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The anatomy of transcarboxylase and the role of its subunits.
    Wood HG
    CRC Crit Rev Biochem; 1979 Dec; 7(2):143-60. PubMed ID: 389548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the binding specificity of the 12S subunit of the transcarboxylase by saturation transfer difference NMR.
    Peikert C; Seeger K; Bhat RK; Berger S
    Org Biomol Chem; 2004 Jun; 2(12):1777-81. PubMed ID: 15188046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcarboxylase. An electron microscopic study of the enzyme with antibodies to biotin.
    Harmon FR; Berger M; Beegen H; Wood HG; Wrigley NG
    J Biol Chem; 1980 Oct; 255(19):9458-64. PubMed ID: 7410434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The importance of methionine residues for the catalysis of the biotin enzyme, transcarboxylase. Analysis by site-directed mutagenesis.
    Shenoy BC; Xie Y; Park VL; Kumar GK; Beegen H; Wood HG; Samols D
    J Biol Chem; 1992 Sep; 267(26):18407-12. PubMed ID: 1526981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the carboxylate delivery module of transcarboxylase: following spontaneous decarboxylation of the 1.3S-CO2- subunit by NMR and FTIR spectroscopies.
    Rivera-Hainaj RE; Pusztai-Carey M; Venkat Reddy D; Choowongkomon K; Sönnichsen FD; Carey PR
    Biochemistry; 2002 Feb; 41(7):2191-7. PubMed ID: 11841210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 5S subunit of transcarboxylase interacts with free biotin as studied by transferred-NOESY and Saturation Transfer Difference NMR.
    Bhat RK; Berger S
    Protein Pept Lett; 2008; 15(6):624-9. PubMed ID: 18680460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of tryptophans at the catalytic and subunit-binding domains of transcarboxylase.
    Kumar GK; Beegen H; Wood HG
    Biochemistry; 1988 Aug; 27(16):5972-8. PubMed ID: 3191102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcarboxylase. 8. Isolation and properties of a biotin-carboxyl carrier protein.
    Gerwin BI; Jacobson BE; Wood HG
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1315-22. PubMed ID: 5271754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunochemistry of the subunits of transcarboxylase.
    Berger M; Wood HG
    J Biol Chem; 1976 Nov; 251(22):7021-34. PubMed ID: 825513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary conservation among biotin enzymes.
    Samols D; Thornton CG; Murtif VL; Kumar GK; Haase FC; Wood HG
    J Biol Chem; 1988 May; 263(14):6461-4. PubMed ID: 2896195
    [No Abstract]   [Full Text] [Related]  

  • 33. Electron microscopy of the large form of transcarboxylase with six attached subunits.
    Wrigley NG
    J Biol Chem; 1977 Feb; 252(4):1500-4. PubMed ID: 838726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcarboxylase: one of nature's early nanomachines.
    Carey PR; Sönnichsen FD; Yee VC
    IUBMB Life; 2004 Oct; 56(10):575-83. PubMed ID: 15814455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenomic analysis of the Giardia intestinalis transcarboxylase reveals multiple instances of domain fusion and fission in the evolution of biotin-dependent enzymes.
    Jordan IK; Henze K; Fedorova ND; Koonin EV; Galperin MY
    J Mol Microbiol Biotechnol; 2003; 5(3):172-89. PubMed ID: 12766347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and structural characterization of the genes coding for adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii.
    Marsh EN; McKie N; Davis NK; Leadlay PF
    Biochem J; 1989 Jun; 260(2):345-52. PubMed ID: 2569861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate binding induces a cooperative conformational change in the 12S subunit of transcarboxylase: Raman crystallographic evidence.
    Zheng X; Rivera-Hainaj RE; Zheng Y; Pusztai-Carey M; Hall PR; Yee VC; Carey PR
    Biochemistry; 2002 Sep; 41(35):10741-6. PubMed ID: 12196011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallization and preliminary X-ray analysis of the 12S central subunit of transcarboxylase from Propionibacterium shermanii.
    Wang YF; Hyatt DC; Rivera RE; Carey PR; Yee VC
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):266-8. PubMed ID: 11173475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The amino acid sequences of the biotinyl subunit essential for the association of transcarboxylase.
    Kumar GK; Bahler CR; Wood HG; Merrifield RB
    J Biol Chem; 1982 Nov; 257(22):13828-34. PubMed ID: 7142178
    [No Abstract]   [Full Text] [Related]  

  • 40. Magnetic resonance studies of the proximity and spatial arrangement of propionyl coenzyme A and pyruvate on a biotin-metalloenzyme, transcarboxylase.
    Fung CH; Gupta RK; Mildvan AS
    Biochemistry; 1976 Jan; 15(1):85-92. PubMed ID: 174714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.