These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38980775)

  • 1. Anatomical-Marker-Driven 3D Markerless Human Motion Capture.
    Jatesiktat P; Lim GM; Lim WS; Ang WT
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38980775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?
    Ruescas-Nicolau AV; Medina-Ripoll E; de Rosario H; Sanchiz Navarro J; Parrilla E; Juan Lizandra MC
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal human motion dataset of 3D anatomical landmarks and pose keypoints.
    Ruescas-Nicolau AV; Medina-Ripoll EJ; Parrilla Bernabé E; de Rosario Martínez H
    Data Brief; 2024 Apr; 53():110157. PubMed ID: 38375138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marker Data Enhancement For Markerless Motion Capture.
    Falisse A; Uhlrich SD; Chaudhari AS; Hicks JL; Delp SL
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors.
    Chatzitofis A; Zarpalas D; Kollias S; Daras P
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras.
    Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S
    Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markerless motion capture: What clinician-scientists need to know right now.
    Ito N; Sigurðsson HB; Seymore KD; Arhos EK; Buchanan TS; Snyder-Mackler L; Silbernagel KG
    JSAMS Plus; 2022 Oct; 1():. PubMed ID: 36438718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of a 3D temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system.
    Ruescas Nicolau AV; De Rosario H; Basso Della-Vedova F; Parrilla Bernabé E; Juan MC; López-Pascual J
    Gait Posture; 2022 Sep; 97():28-34. PubMed ID: 35868094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA; Chaaban CR; Padua DA
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient 3D Human Pose Retrieval and Reconstruction from 2D Image-Based Landmarks.
    Yasin H; Krüger B
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33915719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Neural Network-based method for estimation of 3D lifting motions.
    Mehrizi R; Peng X; Xu X; Zhang S; Li K
    J Biomech; 2019 Feb; 84():87-93. PubMed ID: 30587377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesising 2D Video from 3D Motion Data for Machine Learning Applications.
    Mundt M; Oberlack H; Goldacre M; Powles J; Funken J; Morris C; Potthast W; Alderson J
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification.
    Kwon J; Lee Y; Lee J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MacaquePose: A Novel "In the Wild" Macaque Monkey Pose Dataset for Markerless Motion Capture.
    Labuguen R; Matsumoto J; Negrete SB; Nishimaru H; Nishijo H; Takada M; Go Y; Inoue KI; Shibata T
    Front Behav Neurosci; 2020; 14():581154. PubMed ID: 33584214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill.
    Torvinen P; Ruotsalainen KS; Zhao S; Cronin N; Ohtonen O; Linnamo V
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Ground Reaction Forces from Two-Dimensional Pose Data: A Biomechanics-Based Comparison of AlphaPose, BlazePose, and OpenPose.
    Mundt M; Born Z; Goldacre M; Alderson J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.