These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38980776)
1. Identifying Associations between Small Nucleolar RNAs and Diseases via Graph Convolutional Network and Attention Mechanism. Liu S; Zhu W; Wang P; Yu S; Wu F IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38980776 [TBL] [Abstract][Full Text] [Related]
2. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning. Zhang L; Chen M; Hu X; Deng L Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876 [TBL] [Abstract][Full Text] [Related]
3. IGCNSDA: unraveling disease-associated snoRNAs with an interpretable graph convolutional network. Hu X; Zhang P; Liu D; Zhang J; Zhang Y; Dong Y; Fan Y; Deng L Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38647155 [TBL] [Abstract][Full Text] [Related]
4. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
5. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network. Pang S; Zhuang Y; Wang X; Wang F; Qiao S BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236 [TBL] [Abstract][Full Text] [Related]
6. SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations. Momanyi BM; Zhou YW; Grace-Mercure BK; Temesgen SA; Basharat A; Ning L; Tang L; Gao H; Lin H; Tang H Curr Res Struct Biol; 2024; 7():100122. PubMed ID: 38188542 [TBL] [Abstract][Full Text] [Related]
7. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes. Hua M; Yu S; Liu T; Yang X; Wang H Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964 [TBL] [Abstract][Full Text] [Related]
8. Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects. Xuan P; Xu K; Cui H; Nakaguchi T; Zhang T Front Pharmacol; 2023; 14():1257842. PubMed ID: 37731739 [No Abstract] [Full Text] [Related]
10. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution. Wu J; Lu P; Zhang W Anal Biochem; 2024 Sep; 692():115554. PubMed ID: 38710353 [TBL] [Abstract][Full Text] [Related]
11. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network. Peng L; Yang C; Chen Y; Liu W IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839 [TBL] [Abstract][Full Text] [Related]
12. Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction. Xuan P; Wang X; Cui H; Meng X; Nakaguchi T; Zhang T IEEE J Biomed Health Inform; 2024 Jul; 28(7):4306-4316. PubMed ID: 38709611 [TBL] [Abstract][Full Text] [Related]
13. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest. Wang B; Ma F; Du X; Zhang G; Li J Front Microbiol; 2024; 15():1394302. PubMed ID: 38881658 [TBL] [Abstract][Full Text] [Related]
14. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549 [TBL] [Abstract][Full Text] [Related]
15. A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder. Shao L; Fu C; Chen X BMC Bioinformatics; 2023 Sep; 24(1):363. PubMed ID: 37759189 [TBL] [Abstract][Full Text] [Related]
16. SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction. Shang J; Zhao L; He X; Meng X; Zhang L; Ge D; Li F; Liu JX IEEE J Biomed Health Inform; 2024 Nov; 28(11):7006-7014. PubMed ID: 39250355 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction. Zhao X; Zhao X; Yin M Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231 [TBL] [Abstract][Full Text] [Related]
18. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related]
19. Revisiting multi-view learning: A perspective of implicitly heterogeneous Graph Convolutional Network. Zou Y; Fang Z; Wu Z; Zheng C; Wang S Neural Netw; 2024 Jan; 169():496-505. PubMed ID: 37939538 [TBL] [Abstract][Full Text] [Related]
20. iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints. Zhang W; Liu B RNA; 2022 Dec; 28(12):1558-1567. PubMed ID: 36192132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]