These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 38980907)
21. The role of MeH73 in actin polymerization and ATP hydrolysis. Nyman T; Schüler H; Korenbaum E; Schutt CE; Karlsson R; Lindberg U J Mol Biol; 2002 Apr; 317(4):577-89. PubMed ID: 11955010 [TBL] [Abstract][Full Text] [Related]
22. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Blanchoin L; Pollard TD; Mullins RD Curr Biol; 2000 Oct; 10(20):1273-82. PubMed ID: 11069108 [TBL] [Abstract][Full Text] [Related]
23. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin. Jégou A; Niedermayer T; Orbán J; Didry D; Lipowsky R; Carlier MF; Romet-Lemonne G PLoS Biol; 2011 Sep; 9(9):e1001161. PubMed ID: 21980262 [TBL] [Abstract][Full Text] [Related]
24. Unraveling the mystery of ATP hydrolysis in actin filaments. McCullagh M; Saunders MG; Voth GA J Am Chem Soc; 2014 Sep; 136(37):13053-8. PubMed ID: 25181471 [TBL] [Abstract][Full Text] [Related]
25. Actin Filament Strain Promotes Severing and Cofilin Dissociation. Schramm AC; Hocky GM; Voth GA; Blanchoin L; Martiel JL; De La Cruz EM Biophys J; 2017 Jun; 112(12):2624-2633. PubMed ID: 28636918 [TBL] [Abstract][Full Text] [Related]
26. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. Orlova A; Egelman EH J Mol Biol; 1992 Oct; 227(4):1043-53. PubMed ID: 1433285 [TBL] [Abstract][Full Text] [Related]
27. Differential dynamic behavior of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP. Rebello CA; Ludescher RD Biochemistry; 1999 Oct; 38(40):13288-95. PubMed ID: 10529203 [TBL] [Abstract][Full Text] [Related]
28. Molecular origins of cofilin-linked changes in actin filament mechanics. Fan J; Saunders MG; Haddadian EJ; Freed KF; De La Cruz EM; Voth GA J Mol Biol; 2013 Apr; 425(7):1225-40. PubMed ID: 23352932 [TBL] [Abstract][Full Text] [Related]
29. Nucleotide effects on the structure and dynamics of actin. Zheng X; Diraviyam K; Sept D Biophys J; 2007 Aug; 93(4):1277-83. PubMed ID: 17526584 [TBL] [Abstract][Full Text] [Related]
30. Atomic view into Plasmodium actin polymerization, ATP hydrolysis, and fragmentation. Kumpula EP; Lopez AJ; Tajedin L; Han H; Kursula I PLoS Biol; 2019 Jun; 17(6):e3000315. PubMed ID: 31199804 [TBL] [Abstract][Full Text] [Related]
31. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF-3 and A1F-4. Combeau C; Carlier MF J Biol Chem; 1988 Nov; 263(33):17429-36. PubMed ID: 3182855 [TBL] [Abstract][Full Text] [Related]
32. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits. Hocky GM; Baker JL; Bradley MJ; Sinitskiy AV; De La Cruz EM; Voth GA J Phys Chem B; 2016 May; 120(20):4558-67. PubMed ID: 27146246 [TBL] [Abstract][Full Text] [Related]
33. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. Carlier MF; Pantaloni D J Biol Chem; 1988 Jan; 263(2):817-25. PubMed ID: 3335528 [TBL] [Abstract][Full Text] [Related]
34. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin. Carlier MF; Valentin-Ranc C; Combeau C; Fievez S; Pantoloni D Adv Exp Med Biol; 1994; 358():71-81. PubMed ID: 7801813 [TBL] [Abstract][Full Text] [Related]
35. Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Wriggers W; Schulten K Proteins; 1999 May; 35(2):262-73. PubMed ID: 10223297 [TBL] [Abstract][Full Text] [Related]
36. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. Pollard TD J Cell Biol; 1986 Dec; 103(6 Pt 2):2747-54. PubMed ID: 3793756 [TBL] [Abstract][Full Text] [Related]
37. Stochastic severing of actin filaments by actin depolymerizing factor/cofilin controls the emergence of a steady dynamical regime. Roland J; Berro J; Michelot A; Blanchoin L; Martiel JL Biophys J; 2008 Mar; 94(6):2082-94. PubMed ID: 18065447 [TBL] [Abstract][Full Text] [Related]
38. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Holmes KC; Angert I; Kull FJ; Jahn W; Schröder RR Nature; 2003 Sep; 425(6956):423-7. PubMed ID: 14508495 [TBL] [Abstract][Full Text] [Related]
39. Measurement of Pi dissociation from actin filaments following ATP hydrolysis using a linked enzyme assay. Carlier MF Biochem Biophys Res Commun; 1987 Mar; 143(3):1069-75. PubMed ID: 3566755 [TBL] [Abstract][Full Text] [Related]
40. Role of ATP-hydrolysis in the dynamics of a single actin filament. Ranjith P; Mallick K; Joanny JF; Lacoste D Biophys J; 2010 Apr; 98(8):1418-27. PubMed ID: 20409460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]