These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38981344)

  • 21. New mechanistic understanding of osteoclast differentiation and bone resorption mediated by P2X7 receptors and PI3K-Akt-GSK3β signaling.
    Lu J; Shi X; Fu Q; Han Y; Zhu L; Zhou Z; Li Y; Lu N
    Cell Mol Biol Lett; 2024 Jul; 29(1):100. PubMed ID: 38977961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review).
    Li Z; Xue H; Tan G; Xu Z
    Mol Med Rep; 2021 Nov; 24(5):. PubMed ID: 34505632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ULK1 Suppresses Osteoclast Differentiation and Bone Resorption via Inhibiting Syk-JNK through DOK3.
    Zhang Y; Zhang S; Wang Y; Yang Z; Chen Z; Wen N; Yang M; Huang Z; Xie Y; Cai L
    Oxid Med Cell Longev; 2021; 2021():2896674. PubMed ID: 34820053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The regulatory roles of long noncoding RNAs in osteoporosis.
    Zhao W; Wang G; Zhou C; Zhao Q
    Am J Transl Res; 2020; 12(9):5882-5907. PubMed ID: 33042467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis.
    Ko NY; Chen LR; Chen KH
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A potential therapeutic drug for osteoporosis: prospect for osteogenic LncRNAs.
    Meng F; Yu Y; Tian Y; Deng M; Zheng K; Guo X; Zeng B; Li J; Qian A; Yin C
    Front Endocrinol (Lausanne); 2023; 14():1219433. PubMed ID: 37600711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis.
    Ji X; Chen X; Yu X
    Int J Mol Sci; 2016 Mar; 17(3):349. PubMed ID: 27005616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long Noncoding RNAs as Bone Marrow Stem Cell Regulators in Osteoporosis.
    Del Real A; López-Delgado L; Sañudo C; García-Ibarbia C; Laguna E; Perez-Campo FM; Menéndez G; Alfonso A; Fakkas M; García-Montesinos B; Valero C; Pérez-Núñez MI; Riancho JA
    DNA Cell Biol; 2020 Sep; 39(9):1691-1699. PubMed ID: 32700968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exosomal lncRNAs NONMMUT000375.2 and NONMMUT071578.2 derived from titanium particle treated RAW264.7 cells regulate osteogenic differentiation of MC3T3-E1 cells.
    Xu J; Li D; Cai Z; Sun H; Su B; Qiu M; Ma R
    J Biomed Mater Res A; 2020 Nov; 108(11):2251-2262. PubMed ID: 32363719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stage-specific modulation of multinucleation, fusion, and resorption by the long non-coding RNA DLEU1 and miR-16 in human primary osteoclasts.
    Moura SR; Sousa AB; Olesen JB; Barbosa MA; Søe K; Almeida MI
    Cell Death Dis; 2024 Oct; 15(10):741. PubMed ID: 39389940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of Wnt signals in bone resorption during physiological and pathological states.
    Maeda K; Takahashi N; Kobayashi Y
    J Mol Med (Berl); 2013 Jan; 91(1):15-23. PubMed ID: 23111637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudogene PTENP1 sponges miR-214 to regulate the expression of PTEN to modulate osteoclast differentiation and attenuate osteoporosis.
    Wang CG; Wang L; Yang T; Su SL; Hu YH; Zhong D
    Cytotherapy; 2020 Aug; 22(8):412-423. PubMed ID: 32561161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight into the Role of Long Non-coding RNAs During Osteogenesis in Mesenchymal Stem Cells.
    Huo S; Zhou Y; He X; Wan M; Du W; Xu X; Ye L; Zhou X; Zheng L
    Curr Stem Cell Res Ther; 2018; 13(1):52-59. PubMed ID: 29141554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overview of RAW264.7 for osteoclastogensis study: Phenotype and stimuli.
    Kong L; Smith W; Hao D
    J Cell Mol Med; 2019 May; 23(5):3077-3087. PubMed ID: 30892789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DDR2 (discoidin domain receptor 2) suppresses osteoclastogenesis and is a potential therapeutic target in osteoporosis.
    Zhang Y; Su J; Wu S; Teng Y; Yin Z; Guo Y; Li J; Li K; Yao L; Li X
    Sci Signal; 2015 Mar; 8(369):ra31. PubMed ID: 25805889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway.
    Qu Z; Zhang B; Kong L; Zhang Y; Zhao Y; Gong Y; Gao X; Feng M; Zhang J; Yan L
    J Leukoc Biol; 2024 Apr; 115(5):946-957. PubMed ID: 38266238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Involvement of Long Non-Coding RNAs in Bone.
    Aurilia C; Donati S; Palmini G; Miglietta F; Iantomasi T; Brandi ML
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. lncRNA-Gm5532 regulates osteoclast differentiation through the miR-125a-3p/TRAF6 axis.
    Zhang J; Zhang L; Yao G; Zhao H; Qiao P; Wu S
    Acta Biochim Biophys Sin (Shanghai); 2024 Jan; 56(1):54-61. PubMed ID: 38098360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts.
    Kim H; Lee K; Kim JM; Kim MY; Kim JR; Lee HW; Chung YW; Shin HI; Kim T; Park ES; Rho J; Lee SH; Kim N; Lee SY; Choi Y; Jeong D
    Nat Commun; 2021 Apr; 12(1):2258. PubMed ID: 33859201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MiRNA-483-5p is involved in the pathogenesis of osteoporosis by promoting osteoclast differentiation.
    Li K; Chen S; Cai P; Chen K; Li L; Yang X; Yi J; Luo X; Du Y; Zheng H
    Mol Cell Probes; 2020 Feb; 49():101479. PubMed ID: 31706013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.