These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38981350)

  • 1. Effects of carbon limitation and carbon fertilization on karst lake-reservoir productivity.
    He H; Liu Z; Li D; Liu X; Han Y; Sun H; Zhao M; Shao M; Shi L; Hao P; Lai C
    Water Res; 2024 Sep; 261():122036. PubMed ID: 38981350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alleviating eutrophication by reducing the abundance of Cyanophyta due to dissolved inorganic carbon fertilization: Insights from Erhai Lake, China.
    Lai C; Ma Z; Liu Z; Sun H; Yu Q; Xia F; He X; Bao Q; Han Y; Liu X; He H
    J Environ Sci (China); 2023 Sep; 131():68-83. PubMed ID: 37225382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eutrophication of freshwater and coastal marine ecosystems: a global problem.
    Smith VH
    Environ Sci Pollut Res Int; 2003; 10(2):126-39. PubMed ID: 12729046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes.
    Qin B; Zhou J; Elser JJ; Gardner WS; Deng J; Brookes JD
    Environ Sci Technol; 2020 Mar; 54(6):3191-3198. PubMed ID: 32073831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of carbon and nutrient exports from different land uses in the aquatic carbon sequestration and eutrophication process.
    Bao Q; Liu Z; Zhao M; Hu Y; Li D; Han C; Zeng C; Chen B; Wei Y; Ma S; Wu Y; Zhang Y
    Sci Total Environ; 2022 Mar; 813():151917. PubMed ID: 34826459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic processes control carbon dioxide dynamics in temperate karst lakes.
    Vargas-Sánchez M; Alcocer J; Puche E; Sánchez-Carrillo S
    PeerJ; 2024; 12():e17393. PubMed ID: 38799067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dilemma of controlling cultural eutrophication of lakes.
    Schindler DW
    Proc Biol Sci; 2012 Nov; 279(1746):4322-33. PubMed ID: 22915669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of CO
    Zagarese HE; Sagrario MLÁG; Wolf-Gladrow D; Nõges P; Nõges T; Kangur K; Matsuzaki SS; Kohzu A; Vanni MJ; Özkundakci D; Echaniz SA; Vignatti A; Grosman F; Sanzano P; Van Dam B; Knoll LB
    Water Res; 2021 Feb; 190():116715. PubMed ID: 33310445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lake eutrophication and its implications for organic carbon sequestration in Europe.
    Anderson NJ; Bennion H; Lotter AF
    Glob Chang Biol; 2014 Sep; 20(9):2741-51. PubMed ID: 24677531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating carbon sequestration into lake management: A potential perspective on climate change.
    Tian Y; Zhao Y; Zhang X; Li S; Wu H
    Sci Total Environ; 2023 Oct; 895():164939. PubMed ID: 37348719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes.
    Zhou J; Han X; Brookes JD; Qin B
    Environ Pollut; 2022 Jan; 292(Pt A):118276. PubMed ID: 34606973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lake metabolic processes and their effects on the carbonate weathering CO
    He H; Wang Y; Liu Z; Bao Q; Wei Y; Chen C; Sun H
    Water Res; 2022 Aug; 222():118907. PubMed ID: 35944408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of succession and growth limitation of phytoplankton for nutrients and light in a large shallow lake.
    Liu X; Chen L; Zhang G; Zhang J; Wu Y; Ju H
    Water Res; 2021 Apr; 194():116910. PubMed ID: 33601234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of organic carbon burial to trophic level changes in a shallow eutrophic lake in SE China.
    Wu P; Gao C; Chen F; Yu S
    J Environ Sci (China); 2016 Aug; 46():220-8. PubMed ID: 27521954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of carbon dioxide exchange fluxes by rainfall and biological carbon pump in karst river-lake systems.
    Lai C; Liu Z; Yu Q; Sun H; Xia F; He X; Ma Z; Han Y; Liu X; Hao P; Bao Q; Shao M; He H
    Sci Total Environ; 2024 Aug; 937():173486. PubMed ID: 38796009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outsized nutrient contributions from small tributaries to a Great Lake.
    Mooney RJ; Stanley EH; Rosenthal WC; Esselman PC; Kendall AD; McIntyre PB
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28175-28182. PubMed ID: 33106397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of microalgae to carbon sequestration in a natural karst wetland aquatic ecosystem: An in-situ mesocosm study.
    Yan Z; Shen T; Li W; Cheng W; Wang X; Zhu M; Yu Q; Xiao Y; Yu L
    Sci Total Environ; 2021 May; 768():144387. PubMed ID: 33450680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Broad-Scale Look at Nutrient Limitation and a Shift toward Co-limitation in United States Lakes.
    Rock LA; Collins SM
    Environ Sci Technol; 2024 Jul; 58(26):11482-11491. PubMed ID: 38889081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.
    Lu X; Song S; Lu Y; Wang T; Liu Z; Li Q; Zhang M; Suriyanarayanan S; Jenkins A
    Environ Sci Process Impacts; 2017 Oct; 19(10):1300-1311. PubMed ID: 28858346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of ammonia nitrogen potentially released from sediments to the development of eutrophication in a plateau lake.
    Ding S; Dan SF; Liu Y; He J; Zhu D; Jiao L
    Environ Pollut; 2022 Jul; 305():119275. PubMed ID: 35413405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.