These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38981391)
1. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. Wu ZH; Li F; Wang F; Jin R; Li Y; Li S; Zhou Z; Jia P; Li JT Ecotoxicol Environ Saf; 2024 Sep; 282():116691. PubMed ID: 38981391 [TBL] [Abstract][Full Text] [Related]
2. Responses of the root morphology and photosynthetic pigments of ryegrass to fertilizer application under combined petroleum-heavy metal stress. Zhang C; Zhang Z; Zhou J; Wang Y; Ai Y; Li X; Zhang P; Zhou S Environ Sci Pollut Res Int; 2022 Dec; 29(58):87874-87883. PubMed ID: 35821315 [TBL] [Abstract][Full Text] [Related]
3. Sulfate-reducing consortium HQ23 stabilizes metal(loid)s and activates biological N-fixation in mixed heavy metal-contaminated soil. Liu H; Yao J; Shi C; Duran R; Liu J; Jiang S; Li M; Pang W; Ma B; Cao Y; Sunahara G Sci Total Environ; 2024 Oct; 946():174402. PubMed ID: 38960171 [TBL] [Abstract][Full Text] [Related]
4. [Immobilization of Heavy Metals by Phosphorus-solubilizing Bacteria and Inhibition of Cd and Pb Uptake by Wheat]. Su NN; Zhao QZ; Wang F; An TC; Niu JJ; Yan JX; Yang JJ; Han H Huan Jing Ke Xue; 2024 Jul; 45(7):4321-4331. PubMed ID: 39022977 [TBL] [Abstract][Full Text] [Related]
5. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Phieler R; Voit A; Kothe E Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709 [TBL] [Abstract][Full Text] [Related]
6. UHPM dominance in driving the formation of petroleum-contaminated soil aggregate, the bacterial communities succession, and phytoremediation. Li X; Wu Q; Wang Y; Li G; Su Y J Hazard Mater; 2024 Jun; 471():134322. PubMed ID: 38636238 [TBL] [Abstract][Full Text] [Related]
7. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the applicability of a "toolbox" designed for microbially assisted phytoremediation: the case study at Ingurtosu mining site (Italy). Sprocati AR; Alisi C; Pinto V; Montereali MR; Marconi P; Tasso F; Turnau K; De Giudici G; Goralska K; Bevilacqua M; Marini F; Cremisini C Environ Sci Pollut Res Int; 2014; 21(11):6939-51. PubMed ID: 24197963 [TBL] [Abstract][Full Text] [Related]
9. Soil-covered strategy for ecological restoration alters the bacterial community structure and predictive energy metabolic functions in mine tailings profiles. Li Y; Sun Q; Zhan J; Yang Y; Wang D Appl Microbiol Biotechnol; 2017 Mar; 101(6):2549-2561. PubMed ID: 27878335 [TBL] [Abstract][Full Text] [Related]
10. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Li FL; Qiu Y; Xu X; Yang F; Wang Z; Feng J; Wang J Ecotoxicol Environ Saf; 2020 Mar; 191():110185. PubMed ID: 31986455 [TBL] [Abstract][Full Text] [Related]
11. Garlic (Allium sativum) based interplanting alters the heavy metals absorption and bacterial diversity in neighboring plants. Hussain J; Wei X; Xue-Gang L; Shah SRU; Aslam M; Ahmed I; Abdullah S; Babar A; Jakhar AM; Azam T Sci Rep; 2021 Mar; 11(1):5833. PubMed ID: 33712650 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. Liu A; Wang W; Chen X; Zheng X; Fu W; Wang G; Ji J; Guan C Environ Pollut; 2022 Dec; 314():120303. PubMed ID: 36181940 [TBL] [Abstract][Full Text] [Related]
13. Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination. Hu C; Yang Z; Chen Y; Tang J; Zeng L; Peng C; Chen L; Wang J Environ Geochem Health; 2024 Sep; 46(10):417. PubMed ID: 39240407 [TBL] [Abstract][Full Text] [Related]
14. Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. Chaudhary DK; Bajagain R; Jeong SW; Kim J World J Microbiol Biotechnol; 2019 Jun; 35(7):99. PubMed ID: 31222505 [TBL] [Abstract][Full Text] [Related]
15. Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Fan M; Xiao X; Guo Y; Zhang J; Wang E; Chen W; Lin Y; Wei G Chemosphere; 2018 Apr; 197():729-740. PubMed ID: 29407837 [TBL] [Abstract][Full Text] [Related]
16. Effects of three plant growth-promoting bacterial symbiosis with ryegrass for remediation of Cd, Pb, and Zn soil in a mining area. Zhao Y; Yao J; Li H; Sunahara G; Li M; Tang C; Duran R; Ma B; Liu H; Feng L; Zhu J; Wu Y J Environ Manage; 2024 Feb; 353():120167. PubMed ID: 38308995 [TBL] [Abstract][Full Text] [Related]
17. Plant growth promoting bacteria and citric acid promote growth and cadmium phytoremediation in ryegrass. Yang X; Li J; Yang Z; Chen M; Zhang L Int J Phytoremediation; 2024 Feb; 26(3):382-392. PubMed ID: 37578385 [TBL] [Abstract][Full Text] [Related]
18. Effect of different amounts of fruit peel-based activator combined with phosphate-solubilizing bacteria on enhancing phytoextraction of Cd from farmland soil by ryegrass. Zhao R; Huang L; Peng X; Fan L; Chen S; Qin P; Zhang J; Chen A; Huang H Environ Pollut; 2023 Jan; 316(Pt 1):120602. PubMed ID: 36379291 [TBL] [Abstract][Full Text] [Related]
19. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Kroulíková S; Mohnke S; Wenzel WW; Tejnecký V; Száková J; Mercl F; Tlustoš P Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391 [TBL] [Abstract][Full Text] [Related]
20. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]