These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38981517)

  • 1. A chemo-mechanical constitutive model for muscle activation in bat wing skins.
    Skulborstad A; Goulbourne NC
    J R Soc Interface; 2024 Jul; 21(216):20230593. PubMed ID: 38981517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
    Cheney JA; Allen JJ; Swartz SM
    J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.
    Cheney JA; Konow N; Bearnot A; Swartz SM
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biaxial mechanical characterization of bat wing skin.
    Skulborstad AJ; Swartz SM; Goulbourne NC
    Bioinspir Biomim; 2015 Apr; 10(3):036004. PubMed ID: 25895436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Measurements of the Wing Kinematics of a Bat in Straight Flight.
    Singh SK; Zhang LB; Zhao JS
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33210129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
    Bergou AJ; Swartz SM; Vejdani H; Riskin DK; Reimnitz L; Taubin G; Breuer KS
    PLoS Biol; 2015; 13(11):e1002297. PubMed ID: 26569116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane muscle function in the compliant wings of bats.
    Cheney JA; Konow N; Middleton KM; Breuer KS; Roberts TJ; Giblin EL; Swartz SM
    Bioinspir Biomim; 2014 Jun; 9(2):025007. PubMed ID: 24855069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lift enhancement by bats' dynamically changing wingspan.
    Wang S; Zhang X; He G; Liu T
    J R Soc Interface; 2015 Dec; 12(113):20150821. PubMed ID: 26701882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bat wing sensors support flight control.
    Sterbing-D'Angelo S; Chadha M; Chiu C; Falk B; Xian W; Barcelo J; Zook JM; Moss CF
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11291-6. PubMed ID: 21690408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings.
    Bahlman JW; Price-Waldman RM; Lippe HW; Breuer KS; Swartz SM
    J Anat; 2016 Jul; 229(1):114-27. PubMed ID: 26969851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upstroke wing flexion and the inertial cost of bat flight.
    Riskin DK; Bergou A; Breuer KS; Swartz SM
    Proc Biol Sci; 2012 Aug; 279(1740):2945-50. PubMed ID: 22496186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of spatial fidelity required to accurately mimic the flight dynamics of a bat.
    Windes P; Tafti DK; Müller R
    Bioinspir Biomim; 2019 Sep; 14(6):066011. PubMed ID: 31443100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.
    Chin DD; Matloff LY; Stowers AK; Tucci ER; Lentink D
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28592663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.
    Stanchak KE; Santana SE
    Anat Rec (Hoboken); 2018 Mar; 301(3):441-448. PubMed ID: 29418120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats.
    Voigt CC; Lewanzik D
    Proc Biol Sci; 2011 Aug; 278(1716):2311-7. PubMed ID: 21208959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a 180-degree U-turn maneuver executed by a hipposiderid bat.
    Windes P; Tafti DK; Müller R
    PLoS One; 2020; 15(11):e0241489. PubMed ID: 33141874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.