These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 38982357)
1. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study. Zhang H; Yang YF; Song XL; Hu HJ; Yang YY; Zhu X; Yang C BMC Med Imaging; 2024 Jul; 24(1):170. PubMed ID: 38982357 [TBL] [Abstract][Full Text] [Related]
2. Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography. Feng C; Ding Z; Lao Q; Zhen T; Ruan M; Han J; He L; Shen Q Eur Radiol; 2024 May; 34(5):2908-2920. PubMed ID: 37938384 [TBL] [Abstract][Full Text] [Related]
3. Predicting Outcome of Patients With Cerebral Hemorrhage Using a Computed Tomography-Based Interpretable Radiomics Model: A Multicenter Study. Yang YF; Zhang H; Song XL; Yang C; Hu HJ; Fang TS; Zhang ZH; Zhu X; Yang YY J Comput Assist Tomogr; 2024 Jun; ():. PubMed ID: 38924426 [TBL] [Abstract][Full Text] [Related]
4. A Radiomics Model Based on CT Images Combined with Multiple Machine Learning Models to Predict the Prognosis of Spontaneous Intracerebral Hemorrhage. Pei L; Fang T; Xu L; Ni C World Neurosurg; 2024 Jan; 181():e856-e866. PubMed ID: 37931880 [TBL] [Abstract][Full Text] [Related]
5. Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study. Wang M; Liang Y; Li H; Chen J; Fu H; Wang X; Xie Y J Stroke Cerebrovasc Dis; 2024 Nov; 33(11):107979. PubMed ID: 39222703 [TBL] [Abstract][Full Text] [Related]
6. Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models. Yang YF; Zhao E; Shi Y; Zhang H; Yang YY Neuroradiology; 2024 Nov; 66(11):1893-1906. PubMed ID: 39225815 [TBL] [Abstract][Full Text] [Related]
7. Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors. Yang P; Wu J; Liu M; Zheng Y; Zhao X; Mao Y Med Phys; 2024 Oct; 51(10):7257-7268. PubMed ID: 38935330 [TBL] [Abstract][Full Text] [Related]
8. CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage. Zhao X; Zhou B; Luo Y; Chen L; Zhu L; Chang S; Fang X; Yao Z Eur Radiol; 2024 Jul; 34(7):4417-4426. PubMed ID: 38127074 [TBL] [Abstract][Full Text] [Related]
9. Application of deep learning and radiomics in the prediction of hematoma expansion in intracerebral hemorrhage: a fully automated hybrid approach. Lu M; Wang Y; Tian J; Feng H Diagn Interv Radiol; 2024 Sep; 30(5):299-312. PubMed ID: 38654561 [TBL] [Abstract][Full Text] [Related]
10. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Xie H; Ma S; Wang X; Zhang X Eur Radiol; 2020 Jan; 30(1):87-98. PubMed ID: 31385050 [TBL] [Abstract][Full Text] [Related]
11. Clinic, CT radiomics, and deep learning combined model for the prediction of invasive pulmonary aspergillosis. Zhang K; Zhao G; Liu Y; Huang Y; Long J; Li N; Yan H; Zhang X; Ma J; Zhang Y BMC Med Imaging; 2024 Oct; 24(1):264. PubMed ID: 39375609 [TBL] [Abstract][Full Text] [Related]
12. Based on hematoma and perihematomal tissue NCCT imaging radiomics predicts early clinical outcome of conservatively treated spontaneous cerebral hemorrhage. Song X; Zhang H; Han Y; Lou S; Zhao E; Dong Y; Yang C Sci Rep; 2024 Aug; 14(1):18546. PubMed ID: 39122887 [TBL] [Abstract][Full Text] [Related]
13. Predicting the pathological invasiveness in patients with a solitary pulmonary nodule via Shapley additive explanations interpretation of a tree-based machine learning radiomics model: a multicenter study. Zhang R; Hong M; Cai H; Liang Y; Chen X; Liu Z; Wu M; Zhou C; Bao C; Wang H; Yang S; Hu Q Quant Imaging Med Surg; 2023 Dec; 13(12):7828-7841. PubMed ID: 38106261 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model. Ma X; Xia L; Chen J; Wan W; Zhou W Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691 [TBL] [Abstract][Full Text] [Related]
15. Quantitative imaging for predicting hematoma expansion in intracerebral hemorrhage: A multimodel comparison. Yang WS; Liu JY; Shen YQ; Xie XF; Zhang SQ; Liu FY; Yu JL; Ma YB; Xiao ZS; Duan HW; Li Q; Chen SX; Xie P J Stroke Cerebrovasc Dis; 2024 Jul; 33(7):107731. PubMed ID: 38657831 [TBL] [Abstract][Full Text] [Related]
16. Prognostic value of CT scan-based radiomics in intracerebral hemorrhage patients: A systematic review and meta-analysis. HajiEsmailPoor Z; Kargar Z; Baradaran M; Shojaeshafiei F; Tabnak P; Mandalou L; Klontzas ME; Shahidi R Eur J Radiol; 2024 Sep; 178():111652. PubMed ID: 39079323 [TBL] [Abstract][Full Text] [Related]
17. Radiomic-based nonlinear supervised learning classifiers on non-contrast CT to predict functional prognosis in patients with spontaneous intracerebral hematoma. Serrano E; Moreno J; Llull L; Rodríguez A; Zwanzger C; Amaro S; Oleaga L; López-Rueda A Radiologia (Engl Ed); 2023; 65(6):519-530. PubMed ID: 38049251 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study. Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702 [TBL] [Abstract][Full Text] [Related]
19. Non-Contrasted CT Radiomics for SAH Prognosis Prediction. Shan D; Wang J; Qi P; Lu J; Wang D Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627852 [TBL] [Abstract][Full Text] [Related]
20. Radiomics features on non-contrast computed tomography predict early enlargement of spontaneous intracerebral hemorrhage. Li H; Xie Y; Wang X; Chen F; Sun J; Jiang X Clin Neurol Neurosurg; 2019 Oct; 185():105491. PubMed ID: 31470362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]