These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 38982641)
1. Cr-Substituted SrCoO He J; Zhou Y; Wu S; Jin L; Cao J; Demir M; Ma P Inorg Chem; 2024 Jul; 63(29):13755-13765. PubMed ID: 38982641 [TBL] [Abstract][Full Text] [Related]
2. Temperature-Dependent Electrochemical Performance of Ta-Substituted SrCoO Liu G; Liu L; Li G; Wu S; He J; Zhou Y; Demir M; Ma P Chemistry; 2024 Mar; 30(14):e202303267. PubMed ID: 38168472 [TBL] [Abstract][Full Text] [Related]
3. Flexible All-Solid-State Asymmetric Supercapacitors Based on PPy-Decorated SrFeO Qiao Y; He J; Zhou Y; Wu S; Li X; Jiang G; Jiang G; Demir M; Ma P ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37933868 [TBL] [Abstract][Full Text] [Related]
4. Flexible Antifreeze Zn-Ion Hybrid Supercapacitor Based on Gel Electrolyte with Graphene Electrodes. Liu J; Khanam Z; Ahmed S; Wang T; Wang H; Song S ACS Appl Mater Interfaces; 2021 Apr; 13(14):16454-16468. PubMed ID: 33789423 [TBL] [Abstract][Full Text] [Related]
5. Application of SrFeO Ahangari M; Mahmoodi E; Delibaş N; Mostafaei J; Asghari E; Niaei A Turk J Chem; 2022; 46(5):1723-1732. PubMed ID: 37529725 [TBL] [Abstract][Full Text] [Related]
6. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Zhu L; Liu Y; Su C; Zhou W; Liu M; Shao Z Angew Chem Int Ed Engl; 2016 Aug; 55(33):9576-9. PubMed ID: 27363300 [TBL] [Abstract][Full Text] [Related]
7. A high-strength, environmentally stable, and recyclable starch/PVA organohydrogel electrolyte for flexible all-solid-state supercapacitor. He L; Wang J; Weng S; Jiang X Carbohydr Polym; 2023 Apr; 306():120587. PubMed ID: 36746579 [TBL] [Abstract][Full Text] [Related]
8. Wide-Temperature Flexible Supercapacitor from an Organohydrogel Electrolyte and Its Combined Electrode. Qian Y; Yu Y; Wu W; Fan Q; Chai C; Hao J Chemistry; 2023 May; 29(25):e202300123. PubMed ID: 36872296 [TBL] [Abstract][Full Text] [Related]
9. B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. Xu Z; Liu Y; Zhou W; Tade MO; Shao Z ACS Appl Mater Interfaces; 2018 Mar; 10(11):9415-9423. PubMed ID: 29468868 [TBL] [Abstract][Full Text] [Related]
10. Vacancy Engineering of Selenium-Vacant NiCo Fu J; Li L; Xue Q; Li L; Guo Z; Meng L; Lai C; Guo Y Molecules; 2024 Sep; 29(19):. PubMed ID: 39407510 [TBL] [Abstract][Full Text] [Related]
11. Snowflake-Like Dendritic CoNi Alloy-rGO Nanocomposite as a Cathode Electrode Material for an All-Solid-State Flexible Asymmetric High-Performance Supercapacitor Device. Makkar P; Ghosh NN ACS Omega; 2020 May; 5(18):10572-10580. PubMed ID: 32426615 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Pseudocapacitive Performance of Symmetric Polypyrrole-MnO Zhuo WJ; Wang YH; Huang CT; Deng MJ Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685336 [TBL] [Abstract][Full Text] [Related]
13. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. Wang M; Duong le D; Mai NT; Kim S; Kim Y; Seo H; Kim YC; Jang W; Lee Y; Suhr J; Nam JD ACS Appl Mater Interfaces; 2015 Jan; 7(2):1348-54. PubMed ID: 25545033 [TBL] [Abstract][Full Text] [Related]
14. Antifreezing Proton Zwitterionic Hydrogel Electrolyte via Ionic Hopping and Grotthuss Transport Mechanism toward Solid Supercapacitor Working at -50 °C. Sun W; Xu Z; Qiao C; Lv B; Gai L; Ji X; Jiang H; Liu L Adv Sci (Weinh); 2022 Sep; 9(27):e2201679. PubMed ID: 35882629 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100 [TBL] [Abstract][Full Text] [Related]
16. Oxygen-vacancy abundant alpha bismuth oxide with enhanced cycle stability for high-energy hybrid supercapacitor electrodes. Xu J; Meng Z; Hao Z; Sun X; Nan H; Liu H; Wang Y; Shi W; Tian H; Hu X J Colloid Interface Sci; 2022 Mar; 609():878-889. PubMed ID: 34836655 [TBL] [Abstract][Full Text] [Related]
17. Controllable fabrication of NiV Li Y; Sun H; Yang Y; Cao Y; Zhou W; Chai H J Colloid Interface Sci; 2020 Nov; 580():298-307. PubMed ID: 32698084 [TBL] [Abstract][Full Text] [Related]
18. Multicomponent Hybridization Transition Metal Oxide Electrode Enriched with Oxygen Vacancy for Ultralong-Life Supercapacitor. Zhang Z; Sun S; Xu Z; Yin S Small; 2023 Oct; 19(41):e2302479. PubMed ID: 37292050 [TBL] [Abstract][Full Text] [Related]
19. Integrated Battery-Capacitor Electrodes: Pyridinic N-Doped Porous Carbon-Coated Abundant Oxygen Vacancy Mn-Ni-Layered Double Oxide for Hybrid Supercapacitors. Jiang S; Qiao Y; Fu T; Peng W; Yu T; Yang B; Xia R; Gao M ACS Appl Mater Interfaces; 2021 Jul; 13(29):34374-34384. PubMed ID: 34261317 [TBL] [Abstract][Full Text] [Related]
20. Well-Ordered Oxygen-Deficient CoMoO Chi K; Zhang Z; Lv Q; Xie C; Xiao J; Xiao F; Wang S ACS Appl Mater Interfaces; 2017 Feb; 9(7):6044-6053. PubMed ID: 28102070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]