These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38982705)
21. Locomotor muscle fatigue is not critically regulated after prior upper body exercise. Johnson MA; Sharpe GR; Williams NC; Hannah R J Appl Physiol (1985); 2015 Oct; 119(7):840-50. PubMed ID: 26272315 [TBL] [Abstract][Full Text] [Related]
22. Acute ibuprofen ingestion does not attenuate fatigue during maximal intermittent knee extensor or all-out cycling exercise. Morgan PT; Vanhatalo A; Bowtell JL; Jones AM; Bailey SJ Appl Physiol Nutr Metab; 2019 Feb; 44(2):208-215. PubMed ID: 30096249 [TBL] [Abstract][Full Text] [Related]
23. The effect of metabolic alkalosis on central and peripheral mechanisms associated with exercise-induced muscle fatigue in humans. Siegler JC; Marshall P Exp Physiol; 2015 Apr; 100(5):519-30. PubMed ID: 25727892 [TBL] [Abstract][Full Text] [Related]
24. The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. Halley SL; Marshall P; Siegler JC Exp Physiol; 2018 Jul; 103(7):976-984. PubMed ID: 29704398 [TBL] [Abstract][Full Text] [Related]
25. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Todd G; Petersen NT; Taylor JL; Gandevia SC Exp Brain Res; 2003 Jun; 150(3):308-13. PubMed ID: 12677313 [TBL] [Abstract][Full Text] [Related]
26. Females show less decline in contractile function than males after repeated all-out cycling. Yoon SH; Cederbaum LA; Côté JN Appl Physiol Nutr Metab; 2024 Feb; 49(2):199-212. PubMed ID: 37820383 [TBL] [Abstract][Full Text] [Related]
27. Cumulative effects of intermittent maximal contractions on voluntary activation deficits. Simpson M; Burke JR; Davis JM Int J Neurosci; 2004 Jun; 114(6):671-92. PubMed ID: 15204059 [TBL] [Abstract][Full Text] [Related]
28. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans. McDougall RM; Tripp TR; Frankish BP; Doyle-Baker PK; Lun V; Wiley JP; Aboodarda SJ; MacInnis MJ J Physiol; 2023 Dec; 601(23):5295-5316. PubMed ID: 37902588 [TBL] [Abstract][Full Text] [Related]
29. Mechanisms for the increased fatigability of the lower limb in people with type 2 diabetes. Senefeld J; Magill SB; Harkins A; Harmer AR; Hunter SK J Appl Physiol (1985); 2018 Aug; 125(2):553-566. PubMed ID: 29596017 [TBL] [Abstract][Full Text] [Related]
30. Relationship between neuromuscular fatigue, muscle activation and the work done above the critical power during severe-intensity exercise. Ducrocq GP; Blain GM Exp Physiol; 2022 Apr; 107(4):312-325. PubMed ID: 35137992 [TBL] [Abstract][Full Text] [Related]
31. Effects of endurance training on neuromuscular fatigue in healthy active men. Part I: Strength loss and muscle fatigue. Mira J; Aboodarda SJ; Floreani M; Jaswal R; Moon SJ; Amery K; Rupp T; Millet GY Eur J Appl Physiol; 2018 Nov; 118(11):2281-2293. PubMed ID: 30121882 [TBL] [Abstract][Full Text] [Related]
32. Contraction intensity and sex differences in knee-extensor fatigability. Ansdell P; Thomas K; Howatson G; Hunter S; Goodall S J Electromyogr Kinesiol; 2017 Dec; 37():68-74. PubMed ID: 28963937 [TBL] [Abstract][Full Text] [Related]
33. Voluntary muscle activation in people with multiple sclerosis is reduced across a wide range of forces following maximal effort-fatiguing contractions. Brotherton EJ; Sabapathy S; Heshmat S; Kavanagh JJ J Neurophysiol; 2023 Nov; 130(5):1162-1173. PubMed ID: 37818597 [TBL] [Abstract][Full Text] [Related]
34. Disparate Mechanisms of Fatigability in Response to Prolonged Running versus Cycling of Matched Intensity and Duration. Brownstein CG; Metra M; Sabater Pastor F; Faricier R; Millet GY Med Sci Sports Exerc; 2022 May; 54(5):872-882. PubMed ID: 35072662 [TBL] [Abstract][Full Text] [Related]
35. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Hamada T; Sale DG; MacDougall JD; Tarnopolsky MA Acta Physiol Scand; 2003 Jun; 178(2):165-73. PubMed ID: 12780391 [TBL] [Abstract][Full Text] [Related]
36. The effect of plyometric training on central and peripheral fatigue in boys. Skurvydas A; Brazaitis M; Streckis V; Rudas E Int J Sports Med; 2010 Jul; 31(7):451-7. PubMed ID: 20432197 [TBL] [Abstract][Full Text] [Related]
37. Gender differences in isometric contractile properties and fatigability in elderly human muscle. Hicks AL; McCartney N Can J Appl Physiol; 1996 Dec; 21(6):441-54. PubMed ID: 8959311 [TBL] [Abstract][Full Text] [Related]
38. Effects of ipsilateral and contralateral fatigue and muscle blood flow occlusion on the complexity of knee-extensor torque output in humans. Pethick J; Winter SL; Burnley M Exp Physiol; 2018 Jul; 103(7):956-967. PubMed ID: 29719079 [TBL] [Abstract][Full Text] [Related]
39. Sex differences in quadriceps and inspiratory muscle fatigability following high-intensity cycling. Beltrami FG; Schaer CE; Spengler CM J Sci Med Sport; 2023 Mar; 26(3):208-213. PubMed ID: 36863893 [TBL] [Abstract][Full Text] [Related]
40. Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males. Monks MR; Compton CT; Yetman JD; Power KE; Button DC J Sci Med Sport; 2017 Jun; 20(6):600-605. PubMed ID: 27825551 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]