These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38982839)

  • 21. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A.
    Gao X; Zhao L; Liu S; Li Y; Xia S; Chen D; Wang M; Wu S; Dai Q; Vu H; Zacharias L; DeBerardinis R; Lim E; Metallo C; Boggon TJ; Lonial S; Lin R; Mao H; Pan Y; Shan C; Chen J
    Mol Cell; 2019 Dec; 76(6):857-871.e9. PubMed ID: 31586547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast.
    Corkins ME; Wilson S; Cocuron JC; Alonso AP; Bird AJ
    J Biol Chem; 2017 Aug; 292(33):13823-13832. PubMed ID: 28667014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the enzymatic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei using structural data and molecular dynamics simulation.
    Duclert-Savatier N; Poggi L; Miclet E; Lopes P; Ouazzani J; Chevalier N; Nilges M; Delarue M; Stoven V
    J Mol Biol; 2009 May; 388(5):1009-21. PubMed ID: 19345229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular explorations of the Leishmania donovani 6-phosphogluconolactonase enzyme, a key player in the pentose phosphate pathway.
    Dhumal TT; Kumar R; Paul A; Roy PK; Garg P; Singh S
    Biochimie; 2022 Nov; 202():212-225. PubMed ID: 36037881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular characterization of the first two enzymes of the pentose-phosphate pathway of Trypanosoma brucei. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase.
    Duffieux F; Van Roy J; Michels PA; Opperdoes FR
    J Biol Chem; 2000 Sep; 275(36):27559-65. PubMed ID: 10867008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the Pentose Phosphate Pathway: Characterization of a New 6PGL Inhibitor.
    Tran AT; Sadet A; Calligari P; Lopes P; Ouazzani J; Sollogoub M; Miclet E; Abergel D
    Biophys J; 2018 Dec; 115(11):2114-2126. PubMed ID: 30467026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive oxidation of key pentose phosphate pathway enzymes modulates the fate of intermediates and NAPDH production.
    Reyes JS; Cortés-Ríos J; Fuentes-Lemus E; Rodriguez-Fernandez M; Davies MJ; López-Alarcón C
    Free Radic Biol Med; 2024 Sep; 222():505-518. PubMed ID: 38848786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae.
    Sinha A; Maitra PK
    J Gen Microbiol; 1992 Sep; 138(9):1865-73. PubMed ID: 1328471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impaired growth of an Escherichia coli rpe mutant lacking ribulose-5-phosphate epimerase activity.
    Lyngstadaas A; Sprenger GA; Boye E
    Biochim Biophys Acta; 1998 Aug; 1381(3):319-30. PubMed ID: 9729441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart.
    Vimercati C; Qanud K; Mitacchione G; Sosnowska D; Ungvari Z; Sarnari R; Mania D; Patel N; Hintze TH; Gupte SA; Stanley WC; Recchia FA
    Am J Physiol Heart Circ Physiol; 2014 Mar; 306(5):H709-17. PubMed ID: 24414069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics.
    Zeden MS; Gallagher LA; Bueno E; Nolan AC; Ahn J; Shinde D; Razvi F; Sladek M; Burke Ó; O'Neill E; Fey PD; Cava F; Thomas VC; O'Gara JP
    PLoS Pathog; 2023 Jul; 19(7):e1011536. PubMed ID: 37486930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peroxyl radicals modify 6-phosphogluconolactonase from Escherichia coli via oxidation of specific amino acids and aggregation which inhibits enzyme activity.
    Reyes JS; Fuentes-Lemus E; Romero J; Arenas F; Fierro A; Davies MJ; López-Alarcón C
    Free Radic Biol Med; 2023 Aug; 204():118-127. PubMed ID: 37119864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Limiting role of 6-phosphogluconolactonase in erythrocyte hexose monophosphate pathway metabolism.
    Beutler E; Kuhl W
    J Lab Clin Med; 1985 Nov; 106(5):573-7. PubMed ID: 3932573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 6-phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene.
    Kupor SR; Fraenkel DG
    J Bacteriol; 1969 Dec; 100(3):1296-301. PubMed ID: 4902810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress.
    Christodoulou D; Link H; Fuhrer T; Kochanowski K; Gerosa L; Sauer U
    Cell Syst; 2018 May; 6(5):569-578.e7. PubMed ID: 29753645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Escherichia coli for the production of riboflavin.
    Lin Z; Xu Z; Li Y; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():104. PubMed ID: 25027702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development.
    Xiong Y; DeFraia C; Williams D; Zhang X; Mou Z
    Plant Cell Physiol; 2009 Jul; 50(7):1277-91. PubMed ID: 19457984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.