These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38984063)
21. Combined Syngas and Hydrogen Production using Gas Switching Technology. Ugwu A; Zaabout A; Donat F; van Diest G; Albertsen K; Müller C; Amini S Ind Eng Chem Res; 2021 Mar; 60(9):3516-3531. PubMed ID: 33840889 [TBL] [Abstract][Full Text] [Related]
22. Using greenhouse gases in the synthesis gas production processes: Thermodynamic conditions. Szczygieł J; Chojnacka K; Skrzypczak D; Izydorczyk G; Moustakas K; Kułażyński M J Environ Manage; 2023 Jan; 325(Pt A):116463. PubMed ID: 36270132 [TBL] [Abstract][Full Text] [Related]
23. Facile CO Warren KJ; Hill CM; Carrillo RJ; Scheffe JR Phys Chem Chem Phys; 2020 Apr; 22(16):8545-8556. PubMed ID: 32253404 [TBL] [Abstract][Full Text] [Related]
24. Integrated CO Bhaskaran A; Singh SA; Reddy BM; Roy S Langmuir; 2024 Jul; 40(29):14766-14778. PubMed ID: 38978485 [TBL] [Abstract][Full Text] [Related]
25. Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions. de la Calle Martos A; Valverde JM; Sanchez-Jimenez PE; Perejón A; García-Garrido C; Perez-Maqueda LA Phys Chem Chem Phys; 2016 Jun; 18(24):16325-36. PubMed ID: 27253328 [TBL] [Abstract][Full Text] [Related]
26. Simultaneous production of syngas and carbon nanotubes from CO Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758 [TBL] [Abstract][Full Text] [Related]
27. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops. Abanades JC; Murillo R; Fernandez JR; Grasa G; Martínez I Environ Sci Technol; 2010 Sep; 44(17):6901-4. PubMed ID: 20704282 [TBL] [Abstract][Full Text] [Related]
28. Limestone calcination under calcium-looping conditions for CO Valverde JM; Medina S Phys Chem Chem Phys; 2017 Mar; 19(11):7587-7596. PubMed ID: 28252141 [TBL] [Abstract][Full Text] [Related]
29. Novel Adsorption-Reaction Process for Biomethane Purification/Production and Renewable Energy Storage. Martins JA; Miguel CV; Rodrigues AE; Madeira LM ACS Sustain Chem Eng; 2022 Jun; 10(24):7833-7851. PubMed ID: 36590651 [TBL] [Abstract][Full Text] [Related]
30. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090 [TBL] [Abstract][Full Text] [Related]
31. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications. Tippawan P; Arpornwichanop A Bioresour Technol; 2014 Apr; 157():231-9. PubMed ID: 24561628 [TBL] [Abstract][Full Text] [Related]
32. Syngas Production From the Reforming of Typical Biogas Compositions in an Inert Porous Media Reactor. Guerrero F; Espinoza L; Ripoll N; Lisbona P; Arauzo I; Toledo M Front Chem; 2020; 8():145. PubMed ID: 32232024 [TBL] [Abstract][Full Text] [Related]
33. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor. Michalsky R; Neuhaus D; Steinfeld A Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206 [TBL] [Abstract][Full Text] [Related]
34. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content. Mei Z; Chen D; Zhang J; Yin L; Huang Z; Xin Q Waste Manag; 2020 Apr; 106():77-87. PubMed ID: 32199229 [TBL] [Abstract][Full Text] [Related]
35. Blending Wastes of Marble Powder and Dolomite Sorbents for Calcium-Looping CO Teixeira P; Fernandes A; Ribeiro F; Pinheiro CIC Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442902 [TBL] [Abstract][Full Text] [Related]
36. Pressure-Induced Enhancement in Chemical Looping Reforming of CH Zhang X; Cheng N; Zhang Y; Tian S; Han L ChemSusChem; 2024 Dec; 17(23):e202400856. PubMed ID: 38894517 [TBL] [Abstract][Full Text] [Related]
37. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide. Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902 [TBL] [Abstract][Full Text] [Related]
38. One-dimensional modeling of heterogeneous catalytic chemical looping steam methane reforming in an adiabatic packed bed reactor. Qayyum H; Cheema II; Abdullah M; Amin M; Khan IA; Lee EJ; Lee KH Front Chem; 2023; 11():1295455. PubMed ID: 38053671 [TBL] [Abstract][Full Text] [Related]
39. Effects of Promoter and Calcination Temperatures on the Catalytic Performance of Y Promoted Co/WC-AC for Dry Reforming of Methane. Li T; Wang J; Zhang G; Liu J; Wang Y; Zhao Y; Li G; Lv Y Chem Asian J; 2023 Jul; 18(13):e202300319. PubMed ID: 37212174 [TBL] [Abstract][Full Text] [Related]
40. Reactive Capture and Conversion of CO Baamran K; Lawson S; Rownaghi AA; Rezaei F JACS Au; 2024 Jan; 4(1):101-115. PubMed ID: 38274256 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]