These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38984160)
21. Production of Genistein in Malla A; Shanmugaraj B; Sharma A; Ramalingam S Plants (Basel); 2021 Oct; 10(11):. PubMed ID: 34834674 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
23. The GmSTF1/2-GmBBX4 negative feedback loop acts downstream of blue-light photoreceptors to regulate isoflavonoid biosynthesis in soybean. Song Z; Zhao F; Chu L; Lin H; Xiao Y; Fang Z; Wang X; Dong J; Lyu X; Yu D; Liu B; Gai J; Xu D Plant Commun; 2024 Feb; 5(2):100730. PubMed ID: 37817409 [TBL] [Abstract][Full Text] [Related]
24. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Dastmalchi M; Dhaubhadel S Proteomics; 2015 May; 15(10):1646-57. PubMed ID: 25757747 [TBL] [Abstract][Full Text] [Related]
25. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. Shelton D; Stranne M; Mikkelsen L; Pakseresht N; Welham T; Hiraka H; Tabata S; Sato S; Paquette S; Wang TL; Martin C; Bailey P Plant Physiol; 2012 Jun; 159(2):531-47. PubMed ID: 22529285 [TBL] [Abstract][Full Text] [Related]
26. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Abbas F; Ke Y; Yu R; Yue Y; Amanullah S; Jahangir MM; Fan Y Planta; 2017 Nov; 246(5):803-816. PubMed ID: 28803364 [TBL] [Abstract][Full Text] [Related]
27. Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Dastmalchi M; Bernards MA; Dhaubhadel S Plant J; 2016 Mar; 85(6):689-706. PubMed ID: 26856401 [TBL] [Abstract][Full Text] [Related]
28. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Yao L; Wu X; Jiang X; Shan M; Zhang Z; Li Y; Yang A; Li Y; Yang C Biotechnol Adv; 2023 Dec; 69():108258. PubMed ID: 37722606 [TBL] [Abstract][Full Text] [Related]
29. Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Liu Y; Patra B; Singh SK; Paul P; Zhou Y; Li Y; Wang Y; Pattanaik S; Yuan L Biotechnol Lett; 2021 Nov; 43(11):2085-2103. PubMed ID: 34564757 [TBL] [Abstract][Full Text] [Related]
30. Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-d-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao. Xu RY; Nan P; Yang Y; Pan H; Zhou T; Chen J Physiol Plant; 2011 Jul; 142(3):265-73. PubMed ID: 21438882 [TBL] [Abstract][Full Text] [Related]
31. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. Jiang L; Gao Y; Han L; Zhang W; Fan P Front Plant Sci; 2023; 14():1220062. PubMed ID: 37575923 [TBL] [Abstract][Full Text] [Related]
32. Metabolic engineering and applications of flavonoids. Forkmann G; Martens S Curr Opin Biotechnol; 2001 Apr; 12(2):155-60. PubMed ID: 11287230 [TBL] [Abstract][Full Text] [Related]
33. Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain. Wang J; Li L; Wang Z; Feng A; Li H; Qaseem MF; Liu L; Deng X; Wu AM Int J Biol Macromol; 2023 Aug; 246():125601. PubMed ID: 37392916 [TBL] [Abstract][Full Text] [Related]
34. Improvement of glucosinolates by metabolic engineering in Miao H; Zeng W; Wang J; Zhang F; Sun B; Wang Q aBIOTECH; 2021 Sep; 2(3):314-329. PubMed ID: 36303883 [TBL] [Abstract][Full Text] [Related]
35. [Metabolic engineering of edible plant oils]. Yue AQ; Sun XP; Li RZ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):489-98. PubMed ID: 18349502 [TBL] [Abstract][Full Text] [Related]
36. Membrane transporters: the key drivers of transport of secondary metabolites in plants. Gani U; Vishwakarma RA; Misra P Plant Cell Rep; 2021 Jan; 40(1):1-18. PubMed ID: 32959124 [TBL] [Abstract][Full Text] [Related]
37. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Zhang P; Du H; Wang J; Pu Y; Yang C; Yan R; Yang H; Cheng H; Yu D Plant Biotechnol J; 2020 Jun; 18(6):1384-1395. PubMed ID: 31769589 [TBL] [Abstract][Full Text] [Related]
38. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Liu Q; Liu Y; Li G; Savolainen O; Chen Y; Nielsen J Nat Commun; 2021 Oct; 12(1):6085. PubMed ID: 34667183 [TBL] [Abstract][Full Text] [Related]
39. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches. Sankari M; Rao PR; Hemachandran H; Pullela PK; Doss C GP; Tayubi IA; Subramanian B; Gothandam KM; Singh P; Ramamoorthy S J Biotechnol; 2018 Jan; 266():89-101. PubMed ID: 29247672 [TBL] [Abstract][Full Text] [Related]
40. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. Jahan MA; Harris B; Lowery M; Coburn K; Infante AM; Percifield RJ; Ammer AG; Kovinich N BMC Genomics; 2019 Feb; 20(1):149. PubMed ID: 30786857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]