These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38984726)

  • 1. Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance.
    Yao J; Kim C; Nian Q; Kang W
    Small; 2024 Jul; ():e2403241. PubMed ID: 38984726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High current carrying and thermal conductive copper-carbon conductors.
    Zhang W; Hu Y; Pan J; Zhang J; Cui J; Yan Q; Ren S
    Nanotechnology; 2019 May; 30(18):185701. PubMed ID: 30673657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity.
    Zheng L; Zheng H; Huo D; Wu F; Shao L; Zheng P; Jiang Y; Zheng X; Qiu X; Liu Y; Zhang Y
    Sci Rep; 2018 Jun; 8(1):9248. PubMed ID: 29915304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Graphene Composites for Power Engineering.
    Knych T; Mamala A; Kwaśniewski P; Kiesiewicz G; Smyrak B; Gniełczyk M; Kawecki A; Korzeń K; Sieja-Smaga E
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastrong Carbon Nanotubes-Copper Core-Shell Wires with Enhanced Electrical and Thermal Conductivities as High-Performance Power Transmission Cables.
    Chen H; Daneshvar F; Tu Q; Sue HJ
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56253-56267. PubMed ID: 36480699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables.
    Kim SJ; Shin DH; Choi YS; Rho H; Park M; Moon BJ; Kim Y; Lee SK; Lee DS; Kim TW; Lee SH; Kim KS; Hong BH; Bae S
    ACS Nano; 2018 Mar; 12(3):2803-2808. PubMed ID: 29510020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications.
    Razaq A; Bibi F; Zheng X; Papadakis R; Jafri SHM; Li H
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers.
    Oh JY; Jun GH; Jin S; Ryu HJ; Hong SH
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3319-25. PubMed ID: 26784473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on the Microstructure Evolution and Properties of Graphene/Copper Composite during Rolling Process.
    Yang Z; Deng F; Tao Z; Yan S; Ma H; Qian M; He W; Zhang Z; Liu Y; Wang L
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and Properties of a Graphene Reinforced Cu-Cr-Mg Composite.
    Lu R; Liu B; Cheng H; Gao S; Li T; Li J; Fang Q
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical Conductivity Modeling of Graphene-based Conductor Materials.
    Rizzi L; Zienert A; Schuster J; Köhne M; Schulz SE
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43088-43094. PubMed ID: 30426736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping.
    Choi D; Kuru C; Choi C; Noh K; Hwang S; Choi W; Jin S
    Small; 2015 Jul; 11(26):3143-52. PubMed ID: 25828562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite.
    Subramaniam C; Yamada T; Kobashi K; Sekiguchi A; Futaba DN; Yumura M; Hata K
    Nat Commun; 2013; 4():2202. PubMed ID: 23877359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries.
    Li B; Cao H; Shao J; Li G; Qu M; Yin G
    Inorg Chem; 2011 Mar; 50(5):1628-32. PubMed ID: 21244033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
    Mehta R; Chugh S; Chen Z
    Nano Lett; 2015 Mar; 15(3):2024-30. PubMed ID: 25650635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel fabrication method of copper-reduced graphene oxide composites with highly aligned reduced graphene oxide and highly anisotropic thermal conductivity.
    Nazeer F; Ma Z; Xie Y; Gao L; Malik A; Khan MA; Wang F; Li H
    RSC Adv; 2019 Jun; 9(31):17967-17974. PubMed ID: 35520544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Axially Continuous Graphene-Copper Wire for High-Power Transmission: Thermoelectrical Characterization and Mechanisms.
    Kashani H; Kim C; Rudolf C; Perkins FK; Cleveland ER; Kang W
    Adv Mater; 2021 Dec; 33(51):e2104208. PubMed ID: 34677890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors.
    Fang B; Peng L; Xu Z; Gao C
    ACS Nano; 2015 May; 9(5):5214-22. PubMed ID: 25893965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(m-phenylenediamine) encapsulated graphene for enhancing corrosion protection performance of epoxy coatings.
    Zhang J; Zheng Y
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34343986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.