These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38984756)

  • 1. A Current Development of Energy Harvesting Systems for Energy-Independent Bioimplantable Biosensors.
    Choi H; Biswas S; Lang P; Bae JH; Kim H
    Small; 2024 Jul; ():e2403899. PubMed ID: 38984756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems.
    Jiang C; Li X; Lian SWM; Ying Y; Ho JS; Ping J
    ACS Nano; 2021 Jun; 15(6):9328-9354. PubMed ID: 34124880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting.
    Ryu H; Yoon HJ; Kim SW
    Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing.
    Haroun A; Tarek M; Mosleh M; Ismail F
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Harvesting Research: The Road from Single Source to Multisource.
    Bai Y; Jantunen H; Juuti J
    Adv Mater; 2018 Jun; ():e1707271. PubMed ID: 29877037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different Scenarios of Autonomous Operation of an Environmental Sensor Node Using a Piezoelectric-Vibration-Based Energy Harvester.
    Bouhedma S; Bin Taufik J; Lange F; Ouali M; Seitz H; Hohlfeld D
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward.
    Dolez PI
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies.
    Hu X; Bao X; Zhang M; Fang S; Liu K; Wang J; Liu R; Kim SH; Baughman RH; Ding J
    Adv Mater; 2023 Dec; 35(49):e2303035. PubMed ID: 37209369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Non-Resonant Piezoelectric-Electromagnetic-Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions.
    Tang G; Wang Z; Hu X; Wu S; Xu B; Li Z; Yan X; Xu F; Yuan D; Li P; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications.
    Jiang L; Yang Y; Chen Y; Zhou Q
    Nano Energy; 2020 Nov; 77():. PubMed ID: 32905454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges.
    Xiahou X; Wu S; Guo X; Li H; Chen C; Xu M
    Sci Bull (Beijing); 2023 Aug; 68(15):1687-1714. PubMed ID: 37451961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Nanogenerators for Ocean Energy Harvesting: Mechanisms, Designs, and Applications.
    Panda S; Hajra S; Oh Y; Oh W; Lee J; Shin H; Vivekananthan V; Yang Y; Mishra YK; Kim HJ
    Small; 2023 Jun; 19(25):e2300847. PubMed ID: 36929123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of electro-chemical processes using energy harvesting materials and devices.
    Zhang Y; Xie M; Adamaki V; Khanbareh H; Bowen CR
    Chem Soc Rev; 2017 Dec; 46(24):7757-7786. PubMed ID: 29125613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancements in Bio-inspired Self-Powered Wireless Sensors: Materials, Mechanisms, and Biomedical Applications.
    Farzin MA; Naghib SM; Rabiee N
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1262-1301. PubMed ID: 38376103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting.
    Fan FR; Wu W
    Research (Wash D C); 2019; 2019():7367828. PubMed ID: 31912044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Test of a Spoke-like Piezoelectric Energy Harvester.
    Gao S; Cao Q; Zhou N; Ao H; Jiang H
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harvesting Inertial Energy and Powering Wearable Devices: A Review.
    Zhang H; Shen Q; Zheng P; Wang H; Zou R; Zhang Z; Pan Y; Zhi JY; Xiang ZR
    Small Methods; 2024 Jan; 8(1):e2300771. PubMed ID: 37853661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials.
    Lee E; Yoo H
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review.
    Vidal JV; Slabov V; Kholkin AL; Dos Santos MPS
    Nanomicro Lett; 2021 Sep; 13(1):199. PubMed ID: 34542731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.