These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38984794)

  • 1. Molecular Photothermal Effect on the 2D-IR Spectroscopy of Acetonitrile-Based Li-Ion Battery Electrolytes.
    Chun SY; Shim JW; Kwak K; Cho M
    J Phys Chem Lett; 2024 Jul; 15(28):7302-7311. PubMed ID: 38984794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting Ultrafast Dynamics in Carbonate-Based Electrolytes for Li-Ion Batteries: Clarifying 2D-IR Cross-Peak Interpretation.
    Lim C; Jeon J; Park K; Liang C; Chae Y; Kwak K; Cho M
    J Phys Chem B; 2023 Nov; 127(44):9566-9574. PubMed ID: 37905968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation Studies of Nonaqueous Lithium Ion Battery Electrolytes.
    Lim J; Lee KK; Liang C; Park KH; Kim M; Kwak K; Cho M
    J Phys Chem B; 2019 Aug; 123(31):6651-6663. PubMed ID: 31074985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?
    Dereka B; Lewis NHC; Zhang Y; Hahn NT; Keim JH; Snyder SA; Maginn EJ; Tokmakoff A
    J Am Chem Soc; 2022 May; 144(19):8591-8604. PubMed ID: 35470669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes.
    Dereka B; Lewis NHC; Keim JH; Snyder SA; Tokmakoff A
    J Phys Chem B; 2022 Jan; 126(1):278-291. PubMed ID: 34962409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular photothermal effects on time-resolved IR spectroscopy.
    Cho M
    J Chem Phys; 2022 Sep; 157(12):124201. PubMed ID: 36182430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Photothermal Effects on Time-Resolved IR Spectroscopy: Solute-Solvent Intermolecular Energy Transfer.
    Cho M
    J Phys Chem B; 2023 Jan; 127(1):300-307. PubMed ID: 36576754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexation dynamics of CH3SCN and Li(+) in acetonitrile studied by two-dimensional infrared spectroscopy.
    Kwon Y; Park S
    Phys Chem Chem Phys; 2015 Oct; 17(37):24193-200. PubMed ID: 26323322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach to ligand-exchange rates applied to lithium-ion battery and sodium-ion battery electrolytes.
    Åvall G; Johansson P
    J Chem Phys; 2020 Jun; 152(23):234104. PubMed ID: 32571038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-specific ultrafast two-dimensional vibrational spectroscopy.
    Bredenbeck J; Ghosh A; Nienhuys HK; Bonn M
    Acc Chem Res; 2009 Sep; 42(9):1332-42. PubMed ID: 19441810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular vibrational energy exchange directly probed with ultrafast two dimensional infrared spectroscopy.
    Bian H; Zhao W; Zheng J
    J Chem Phys; 2009 Sep; 131(12):124501. PubMed ID: 19791888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation Structure around Li
    Lim C; Kim JH; Chae Y; Lee KK; Kwak K; Cho M
    Anal Chem; 2021 Sep; 93(37):12594-12601. PubMed ID: 34491717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods.
    Kraack JP
    Top Curr Chem (Cham); 2017 Oct; 375(6):86. PubMed ID: 29071445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.
    Fayer MD; Moilanen DE; Wong D; Rosenfeld DE; Fenn EE; Park S
    Acc Chem Res; 2009 Sep; 42(9):1210-9. PubMed ID: 19378969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorophosphate-Based Nonflammable Concentrated Electrolytes with a Designed Lithium-Ion-Ordered Structure: Relationship between the Bulk Electrolyte and Electrode Interface Structures.
    Sawayama S; Morinaga A; Mimura H; Morita M; Katayama Y; Fujii K
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6201-6207. PubMed ID: 33502162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-pairing dynamics of Li+ and SCN- in dimethylformamide solution: chemical exchange two-dimensional infrared spectroscopy.
    Lee KK; Park KH; Kwon D; Choi JH; Son H; Park S; Cho M
    J Chem Phys; 2011 Feb; 134(6):064506. PubMed ID: 21322704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-Assisted Li-Ion Transport and Structural Heterogeneity in Fluorinated Battery Electrolytes.
    Reddy TDN; Mallik BS
    J Phys Chem B; 2021 Sep; 125(37):10551-10561. PubMed ID: 34516128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using 2D-IR Spectroscopy to Measure the Structure, Dynamics, and Intermolecular Interactions of Proteins in H
    Hunt NT
    Acc Chem Res; 2024 Mar; 57(5):685-692. PubMed ID: 38364823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes.
    Shakourian-Fard M; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2016 Sep; 17(18):2916-30. PubMed ID: 27257715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Electrolyte Design: Broadening the Horizons of Functional Electrolytes in Lithium Batteries.
    Qin M; Zeng Z; Cheng S; Xie J
    Acc Chem Res; 2024 Apr; 57(8):1163-1173. PubMed ID: 38556989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.