These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38984985)

  • 1. Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario.
    Boyd A; Ye Z; Prabhu SP; Tjong MC; Zha Y; Zapaishchykova A; Vajapeyam S; Catalano PJ; Hayat H; Chopra R; Liu KX; Nabavizadeh A; Resnick AC; Mueller S; Haas-Kogan DA; Aerts HJWL; Poussaint TY; Kann BH
    Radiol Artif Intell; 2024 Jul; 6(4):e230254. PubMed ID: 38984985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning.
    Boyd A; Ye Z; Prabhu S; Tjong MC; Zha Y; Zapaishchykova A; Vajapeyam S; Hayat H; Chopra R; Liu KX; Nabavidazeh A; Resnick A; Mueller S; Haas-Kogan D; Aerts HJWL; Poussaint T; Kann BH
    medRxiv; 2023 Sep; ():. PubMed ID: 37425854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors.
    Vossough A; Khalili N; Familiar AM; Gandhi D; Viswanathan K; Tu W; Haldar D; Bagheri S; Anderson H; Haldar S; Storm PB; Resnick A; Ware JB; Nabavizadeh A; Fathi Kazerooni A
    AJNR Am J Neuroradiol; 2024 Aug; 45(8):1081-1089. PubMed ID: 38724204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study.
    Bareja R; Ismail M; Martin D; Nayate A; Yadav I; Labbad M; Dullur P; Garg S; Tamrazi B; Salloum R; Margol A; Judkins A; Iyer S; de Blank P; Tiwari P
    Radiol Artif Intell; 2024 Sep; 6(5):e230115. PubMed ID: 39166971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auto-segmentation of Adult-Type Diffuse Gliomas: Comparison of Transfer Learning-Based Convolutional Neural Network Model vs. Radiologists.
    Wan Q; Kim J; Lindsay C; Chen X; Li J; Iorgulescu JB; Huang RY; Zhang C; Reardon D; Young GS; Qin L
    J Imaging Inform Med; 2024 Aug; 37(4):1401-1410. PubMed ID: 38383806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning.
    Tak D; Ye Z; Zapaischykova A; Zha Y; Boyd A; Vajapeyam S; Chopra R; Hayat H; Prabhu SP; Liu KX; Elhalawani H; Nabavizadeh A; Familiar A; Resnick AC; Mueller S; Aerts HJWL; Bandopadhayay P; Ligon KL; Haas-Kogan DA; Poussaint TY; Kann BH
    Radiol Artif Intell; 2024 May; 6(3):e230333. PubMed ID: 38446044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.
    Schelb P; Tavakoli AA; Tubtawee T; Hielscher T; Radtke JP; Görtz M; Schütz V; Kuder TA; Schimmöller L; Stenzinger A; Hohenfellner M; Schlemmer HP; Bonekamp D
    Rofo; 2021 May; 193(5):559-573. PubMed ID: 33212541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
    Ottom MA; Rahman HA; Dinov ID
    IEEE J Transl Eng Health Med; 2022; 10():1800508. PubMed ID: 35774412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study.
    Hosny A; Bitterman DS; Guthier CV; Qian JM; Roberts H; Perni S; Saraf A; Peng LC; Pashtan I; Ye Z; Kann BH; Kozono DE; Christiani D; Catalano PJ; Aerts HJWL; Mak RH
    Lancet Digit Health; 2022 Sep; 4(9):e657-e666. PubMed ID: 36028289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Borrowing strength from adults: Transferability of AI algorithms for paediatric brain and tumour segmentation.
    Drai M; Testud B; Brun G; Hak JF; Scavarda D; Girard N; Stellmann JP
    Eur J Radiol; 2022 Jun; 151():110291. PubMed ID: 35405580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma.
    Gagnon L; Gupta D; Mastorakos G; White N; Goodwill V; McDonald CR; Beaumont T; Conlin C; Seibert TM; Nguyen U; Hattangadi-Gluth J; Kesari S; Schulte JD; Piccioni D; Schmainda KM; Farid N; Dale AM; Rudie JD
    Radiol Artif Intell; 2024 Sep; 6(5):e230489. PubMed ID: 39166970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario.
    Di Ieva A; Russo C; Liu S; Jian A; Bai MY; Qian Y; Magnussen JS
    Neuroradiology; 2021 Aug; 63(8):1253-1262. PubMed ID: 33501512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL; Han M; Kim LH; Koran ME; Chen LC; Lee EH; Wright J; Ramaswamy V; Lober RM; Taylor MD; Grant GA; Cheshier SH; Kestle JRW; Edwards MSB; Yeom KW
    J Neurosurg Pediatr; 2021 Feb; 27(2):131-138. PubMed ID: 33260138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features].
    Tian H; Wang Y; Ji Y; Rahman MM
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):447-454. PubMed ID: 38645864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Models for Abdominal CT Organ Segmentation in Children: Development and Validation in Internal and Heterogeneous Public Datasets.
    Somasundaram E; Taylor Z; Alves VV; Qiu L; Fortson BL; Mahalingam N; Dudley JA; Li H; Brady SL; Trout AT; Dillman JR
    AJR Am J Roentgenol; 2024 Jul; 223(1):e2430931. PubMed ID: 38691411
    [No Abstract]   [Full Text] [Related]  

  • 20. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.