These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38985188)
1. Accuracy of prediction from multi-environment trials for new locations using pedigree information and environmental covariates: the case of sorghum (Sorghum bicolor (L.) Moench) breeding. Tadese D; Piepho HP; Hartung J Theor Appl Genet; 2024 Jul; 137(8):181. PubMed ID: 38985188 [TBL] [Abstract][Full Text] [Related]
2. Multi-environment analysis of sorghum breeding trials using additive and dominance genomic relationships. Hunt CH; Hayes BJ; van Eeuwijk FA; Mace ES; Jordan DR Theor Appl Genet; 2020 Mar; 133(3):1009-1018. PubMed ID: 31907563 [TBL] [Abstract][Full Text] [Related]
4. Combining pedigree and genomic information to improve prediction quality: an example in sorghum. Velazco JG; Malosetti M; Hunt CH; Mace ES; Jordan DR; van Eeuwijk FA Theor Appl Genet; 2019 Jul; 132(7):2055-2067. PubMed ID: 30968160 [TBL] [Abstract][Full Text] [Related]
5. Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). Enyew M; Feyissa T; Geleta M; Tesfaye K; Hammenhag C; Carlsson AS PLoS One; 2021; 16(10):e0258211. PubMed ID: 34610051 [TBL] [Abstract][Full Text] [Related]
6. Genomic prediction of hybrid performance for agronomic traits in sorghum. Sapkota S; Boatwright JL; Kumar N; Myers M; Cox A; Ackerman A; Caughman W; Brenton ZW; Boyles RE; Kresovich S G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36454599 [TBL] [Abstract][Full Text] [Related]
7. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Velazco JG; Rodríguez-Álvarez MX; Boer MP; Jordan DR; Eilers PHC; Malosetti M; van Eeuwijk FA Theor Appl Genet; 2017 Jul; 130(7):1375-1392. PubMed ID: 28374049 [TBL] [Abstract][Full Text] [Related]
8. Interpretation of genotype-environment-sowing date/plant density interaction in sorghum [ Gao FC; Yan HD; Gao Y; Huang Y; Li M; Song GL; Ren YM; Li JH; Jiang YX; Tang YJ; Wang YX; Liu T; Fan GY; Wang ZG; Guo RF; Meng FH; Han FX; Jiao SJ; Li GY Front Plant Sci; 2022; 13():1008198. PubMed ID: 36212350 [TBL] [Abstract][Full Text] [Related]
9. Dissecting the Genetic Architecture of Biofuel-Related Traits in a Sorghum Breeding Population. Ishimori M; Takanashi H; Hamazaki K; Atagi Y; Kajiya-Kanegae H; Fujimoto M; Yoneda J; Tokunaga T; Tsutsumi N; Iwata H G3 (Bethesda); 2020 Dec; 10(12):4565-4577. PubMed ID: 33051261 [TBL] [Abstract][Full Text] [Related]
10. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments. Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481 [TBL] [Abstract][Full Text] [Related]
11. Genomic Selection for Antioxidant Production in a Panel of Habyarimana E; Lopez-Cruz M Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31653099 [TBL] [Abstract][Full Text] [Related]
12. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. Bohlouli M; Alijani S; Naderi S; Yin T; König S J Dairy Sci; 2019 Jan; 102(1):488-502. PubMed ID: 30343923 [TBL] [Abstract][Full Text] [Related]
13. Projecting results of zoned multi-environment trials to new locations using environmental covariates with random coefficient models: accuracy and precision. Buntaran H; Forkman J; Piepho HP Theor Appl Genet; 2021 May; 134(5):1513-1530. PubMed ID: 33830294 [TBL] [Abstract][Full Text] [Related]
14. Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials. Fernandes IK; Vieira CC; Dias KOG; Fernandes SB Theor Appl Genet; 2024 Jul; 137(8):189. PubMed ID: 39044035 [TBL] [Abstract][Full Text] [Related]
15. Genotype by environment interaction, AMMI, GGE biplot, and mega environment analysis of elite Demelash H Heliyon; 2024 Mar; 10(5):e26528. PubMed ID: 38434414 [TBL] [Abstract][Full Text] [Related]
16. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086 [TBL] [Abstract][Full Text] [Related]
17. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials. Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity of Ethiopian sorghum reveals signatures of climatic adaptation. Menamo T; Kassahun B; Borrell AK; Jordan DR; Tao Y; Hunt C; Mace E Theor Appl Genet; 2021 Feb; 134(2):731-742. PubMed ID: 33341904 [TBL] [Abstract][Full Text] [Related]
19. Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum ( Ongom PO; Ejeta G G3 (Bethesda); 2018 Jan; 8(1):331-341. PubMed ID: 29150594 [TBL] [Abstract][Full Text] [Related]
20. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]