These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38985871)

  • 21. Bromotryptophan and its Analogs in Peptides from Marine Animals.
    Jimenez EC
    Protein Pept Lett; 2019; 26(4):251-260. PubMed ID: 30663557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Late-Stage Diversification of Tryptophan-Derived Biomolecules.
    Gruß H; Sewald N
    Chemistry; 2020 Apr; 26(24):5328-5340. PubMed ID: 31544296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides.
    Colombano A; Dalponte L; Dall'Angelo S; Clemente C; Idress M; Ghazal A; Houssen WE
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215979. PubMed ID: 36815722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clickable gold nanoparticles for streamlining capture, enrichment and release of alkyne-labelled proteins.
    Narita S; Kobayashi N; Mori K; Sakurai K
    Bioorg Med Chem Lett; 2019 Dec; 29(24):126768. PubMed ID: 31690474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthogonal bioconjugation targeting cysteine-containing peptides and proteins using alkyl thianthrenium salts.
    Bao G; Song X; Li Y; He Z; Zuo Q; E R; Yu T; Li K; Xie J; Sun W; Wang R
    Nat Commun; 2024 Aug; 15(1):6909. PubMed ID: 39134527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity.
    Bagheri M; Amininasab M; Dathe M
    Chemistry; 2018 Sep; 24(53):14242-14253. PubMed ID: 29969522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Late-Stage Peptide Diversification by Bioorthogonal Catalytic C-H Arylation at 23 °C in H2 O.
    Zhu Y; Bauer M; Ackermann L
    Chemistry; 2015 Jul; 21(28):9980-3. PubMed ID: 26037620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macrocyclization of Maleimide-Decorated Peptides via Late-Stage Rh(III)-Catalyzed Trp(C7) Alkenylation.
    Zhang Y; Hu S; Li Y; Wang Y; Yu T; Chen Q; Wang J; Liu H
    Org Lett; 2023 Apr; 25(14):2456-2460. PubMed ID: 36999881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Late-stage peptide modification and macrocyclization enabled by tertiary amine catalyzed tryptophan allylation.
    Liu Y; Li G; Ma W; Bao G; Li Y; He Z; Xu Z; Wang R; Sun W
    Chem Sci; 2024 Jul; 15(28):11099-11107. PubMed ID: 39027288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. π-Cation interactions as the origin of the weak absorption at 532 nm observed in tryptophan-containing polypeptides.
    Roveri OA; Braslavsky SE
    Photochem Photobiol Sci; 2012 Jun; 11(6):962-6. PubMed ID: 22273601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Side-Selective Solid-Phase Metallaphotoredox
    Delgado JAC; Tian YM; Marcon M; König B; Paixão MW
    J Am Chem Soc; 2023 Dec; 145(48):26452-26462. PubMed ID: 37976043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and disaggregation of asparagine repeat-containing peptides.
    Lu X; Murphy RM
    J Pept Sci; 2014 Nov; 20(11):860-7. PubMed ID: 25044797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognition of a nucleic acid base by tryptophan-containing peptides: spectroscopic comparison of the interaction of Trp-Gly-Gly-Glu and Trp-Gly-Gly-Gln with 7-methylguanine base.
    Ishida T; Toda Y; Tarui M; Doi M; Inoue M
    Chem Pharm Bull (Tokyo); 1994 Mar; 42(3):674-6. PubMed ID: 8004716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process.
    Tower SJ; Hetcher WJ; Myers TE; Kuehl NJ; Taylor MT
    J Am Chem Soc; 2020 May; 142(20):9112-9118. PubMed ID: 32348670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tryptophan residues: scarce in proteins but strong stabilizers of β-hairpin peptides.
    Santiveri CM; Jiménez MA
    Biopolymers; 2010; 94(6):779-90. PubMed ID: 20564027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Late-Stage Macrocyclization of Bioactive Peptides with Internal Oxazole Motifs via Palladium-Catalyzed C-H Olefination.
    Liu S; Cai C; Bai Z; Sheng W; Tan J; Wang H
    Org Lett; 2021 Apr; 23(8):2933-2937. PubMed ID: 33818093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Milk proteins as a source of tryptophan-containing bioactive peptides.
    Nongonierma AB; FitzGerald RJ
    Food Funct; 2015 Jul; 6(7):2115-27. PubMed ID: 26027501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intra and intermolecular charge effects on the reaction of the superoxide radical anion with semi-oxidized tryptophan in peptides and N-acetyl tryptophan.
    Santus R; Patterson LK; Bazin M; Mazière JC; Morlière P
    Free Radic Res; 1998 Nov; 29(5):409-19. PubMed ID: 9925033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Chiral Nonracemic α-Difluoromethylthio Compounds with Tetrasubstituted Stereogenic Centers via a Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation.
    Kondo H; Maeno M; Sasaki K; Guo M; Hashimoto M; Shiro M; Shibata N
    Org Lett; 2018 Nov; 20(22):7044-7048. PubMed ID: 30407832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.