These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38986019)
1. Location of Phosphorylation Sites within Long Polypeptide Chains by Binder-Assisted Nanopore Detection. Lan WH; He H; Bayley H; Qing Y J Am Chem Soc; 2024 Sep; 146(35):24265-24270. PubMed ID: 38986019 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Martin-Baniandres P; Lan WH; Board S; Romero-Ruiz M; Garcia-Manyes S; Qing Y; Bayley H Nat Nanotechnol; 2023 Nov; 18(11):1335-1340. PubMed ID: 37500774 [TBL] [Abstract][Full Text] [Related]
3. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Huang G; Willems K; Soskine M; Wloka C; Maglia G Nat Commun; 2017 Oct; 8(1):935. PubMed ID: 29038539 [TBL] [Abstract][Full Text] [Related]
4. Electroosmotic Sensing of Uncharged Peptides and Differentiating Their Phosphorylated States Using Nanopores. Si W; Chen J; Zhang Z; Wu G; Zhao J; Sha J Chemphyschem; 2024 Aug; 25(15):e202400281. PubMed ID: 38686913 [TBL] [Abstract][Full Text] [Related]
5. Single polypeptide detection using a translocon EXP2 nanopore. Miyagi M; Takiguchi S; Hakamada K; Yohda M; Kawano R Proteomics; 2022 Mar; 22(5-6):e2100070. PubMed ID: 34411416 [TBL] [Abstract][Full Text] [Related]
6. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Rosen CB; Rodriguez-Larrea D; Bayley H Nat Biotechnol; 2014 Feb; 32(2):179-81. PubMed ID: 24441471 [TBL] [Abstract][Full Text] [Related]
7. Nanopore Detection Using Supercharged Polypeptide Molecular Carriers. Wang X; Thomas TM; Ren R; Zhou Y; Zhang P; Li J; Cai S; Liu K; Ivanov AP; Herrmann A; Edel JB J Am Chem Soc; 2023 Mar; 145(11):6371-6382. PubMed ID: 36897933 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
9. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nova IC; Ritmejeris J; Brinkerhoff H; Koenig TJR; Gundlach JH; Dekker C Nat Biotechnol; 2024 May; 42(5):710-714. PubMed ID: 37386295 [TBL] [Abstract][Full Text] [Related]
10. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
11. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. Restrepo-Pérez L; Huang G; Bohländer PR; Worp N; Eelkema R; Maglia G; Joo C; Dekker C ACS Nano; 2019 Dec; 13(12):13668-13676. PubMed ID: 31536327 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional Peptide Translocation through Ultrasmall Solid-State Nanopores. Wei G; Hu R; Lu W; Wang Z; Zhao Q Langmuir; 2024 Oct; 40(39):20831-20839. PubMed ID: 39301609 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of selectively labeled peptides using solid-state nanopores. Yu JS; Hong SC; Wu S; Kim HM; Lee C; Lee JS; Lee JE; Kim KB Nanoscale; 2019 Jan; 11(5):2510-2520. PubMed ID: 30672547 [TBL] [Abstract][Full Text] [Related]
16. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides. Asandei A; Rossini AE; Chinappi M; Park Y; Luchian T Langmuir; 2017 Dec; 33(50):14451-14459. PubMed ID: 29178796 [TBL] [Abstract][Full Text] [Related]
17. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH. Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739 [TBL] [Abstract][Full Text] [Related]
18. Enhanced identification of Tau acetylation and phosphorylation with an engineered aerolysin nanopore. Huo MZ; Hu ZL; Ying YL; Long YT Proteomics; 2022 Mar; 22(5-6):e2100041. PubMed ID: 34545670 [TBL] [Abstract][Full Text] [Related]
19. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Brinkerhoff H; Kang ASW; Liu J; Aksimentiev A; Dekker C Science; 2021 Dec; 374(6574):1509-1513. PubMed ID: 34735217 [TBL] [Abstract][Full Text] [Related]
20. Quantification of Protein Glycosylation Using Nanopores. Versloot RCA; Lucas FLR; Yakovlieva L; Tadema MJ; Zhang Y; Wood TM; Martin NI; Marrink SJ; Walvoort MTC; Maglia G Nano Lett; 2022 Jul; 22(13):5357-5364. PubMed ID: 35766994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]