These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38987043)
1. A knowledge-data integration framework for rolling element bearing RUL prediction across its life cycle. Yang L; Li T; Dong Y; Duan R; Liao Y ISA Trans; 2024 Sep; 152():331-357. PubMed ID: 38987043 [TBL] [Abstract][Full Text] [Related]
2. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network. Song L; Wu J; Wang L; Chen G; Shi Y; Liu Z Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238553 [TBL] [Abstract][Full Text] [Related]
3. Joint optimization of degradation assessment and remaining useful life prediction for bearings with temporal convolutional auto-encoder. Ding Y; Jia M; Zhao X; Yan X; Lee CG ISA Trans; 2024 Mar; 146():451-462. PubMed ID: 38320915 [TBL] [Abstract][Full Text] [Related]
4. A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint. Zhou J; Qin Y IEEE Trans Neural Netw Learn Syst; 2024 Oct; PP():. PubMed ID: 39423078 [TBL] [Abstract][Full Text] [Related]
5. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings. Zhang C; Zeng M; Fan J; Li X Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000911 [TBL] [Abstract][Full Text] [Related]
6. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing. Yang C; Ma J; Wang X; Li X; Li Z; Luo T ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998 [TBL] [Abstract][Full Text] [Related]
7. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes. Wang D; Xian X; Song C IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999 [TBL] [Abstract][Full Text] [Related]
8. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. Yan M; Wang X; Wang B; Chang M; Muhammad I ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470 [TBL] [Abstract][Full Text] [Related]
9. Rolling Bearing Remaining Useful Life Prediction Based on CNN-VAE-MBiLSTM. Yang L; Jiang Y; Zeng K; Peng T Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793847 [TBL] [Abstract][Full Text] [Related]
10. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
11. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network. Sun S; Peng T; Huang H Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579 [TBL] [Abstract][Full Text] [Related]
12. Remaining useful life prognostics of bearings based on convolution attention networks and enhanced transformer. Sun N; Tang J; Ye X; Zhang C; Zhu S; Wang S; Sun Y Heliyon; 2024 Oct; 10(19):e38317. PubMed ID: 39416821 [TBL] [Abstract][Full Text] [Related]
13. A Two-Stage Attention-Based Hierarchical Transformer for Turbofan Engine Remaining Useful Life Prediction. Fan Z; Li W; Chang KC Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339540 [TBL] [Abstract][Full Text] [Related]
14. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction. Zhao C; Huang X; Li Y; Yousaf Iqbal M Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457 [TBL] [Abstract][Full Text] [Related]
15. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis. Hotait H; Chiementin X; Rasolofondraibe L Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610 [TBL] [Abstract][Full Text] [Related]
16. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories. Luo H; Bo L; Liu X; Zhang H Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887 [TBL] [Abstract][Full Text] [Related]
17. A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings. Peng C; Zhao Y; Li C; Tang Z; Gui W Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998231 [TBL] [Abstract][Full Text] [Related]
18. Anomaly-informed remaining useful life estimation (AIRULE) of bearing machinery using deep learning framework. Kamat P; Kumar S; Patil S; Kotecha K MethodsX; 2024 Jun; 12():102555. PubMed ID: 38292312 [TBL] [Abstract][Full Text] [Related]
19. Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network. Li P; Liu X; Yang Y Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205477 [TBL] [Abstract][Full Text] [Related]
20. Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE-MACNN. Wang Y; Wang J; Zhang S; Xu D; Ge J Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]