These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38987236)

  • 1. Polar confinement of a macromolecular machine by an SRP-type GTPase.
    Dornes A; Schmidt LM; Mais CN; Hook JC; Pané-Farré J; Kressler D; Thormann K; Bange G
    Nat Commun; 2024 Jul; 15(1):5797. PubMed ID: 38987236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein.
    Green JC; Kahramanoglou C; Rahman A; Pender AM; Charbonnel N; Fraser GM
    J Mol Biol; 2009 Aug; 391(4):679-90. PubMed ID: 19497327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of FlhF, SRP-like GTPase with FliF, MS ring component assembling the initial structure of flagella in marine Vibrio.
    Fukushima Y; Homma M; Kojima S
    J Biochem; 2023 Jul; 174(2):125-130. PubMed ID: 37021788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HubP, a Polar Landmark Protein, Regulates Flagellar Number by Assisting in the Proper Polar Localization of FlhG in Vibrio alginolyticus.
    Takekawa N; Kwon S; Nishioka N; Kojima S; Homma M
    J Bacteriol; 2016 Nov; 198(22):3091-3098. PubMed ID: 27573015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the flagellation pattern in
    Gibson KH; Botting JM; Al-Otaibi N; Maitre K; Bergeron J; Starai VJ; Hoover TR
    J Bacteriol; 2023 Sep; 205(9):e0011023. PubMed ID: 37655916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in
    Terashima H; Hirano K; Inoue Y; Tokano T; Kawamoto A; Kato T; Yamaguchi E; Namba K; Uchihashi T; Kojima S; Homma M
    J Bacteriol; 2020 Jun; 202(16):. PubMed ID: 32482724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Single Polar Flagellar Biogenesis.
    Kojima S; Terashima H; Homma M
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32244780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio.
    Kondo S; Imura Y; Mizuno A; Homma M; Kojima S
    Sci Rep; 2018 Aug; 8(1):12115. PubMed ID: 30108243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus.
    Kusumoto A; Nishioka N; Kojima S; Homma M
    J Biochem; 2009 Nov; 146(5):643-50. PubMed ID: 19605463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants.
    Thomas D; Morgan DG; DeRosier DJ
    J Bacteriol; 2001 Nov; 183(21):6404-12. PubMed ID: 11591685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa.
    Schniederberend M; Abdurachim K; Murray TS; Kazmierczak BI
    J Bacteriol; 2013 Mar; 195(5):1051-60. PubMed ID: 23264582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP.
    Bange G; Petzold G; Wild K; Parlitz RO; Sinning I
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13621-5. PubMed ID: 17699634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.
    Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni.
    Balaban M; Joslin SN; Hendrixson DR
    J Bacteriol; 2009 Nov; 191(21):6602-11. PubMed ID: 19717591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
    Kusumoto A; Shinohara A; Terashima H; Kojima S; Yakushi T; Homma M
    Microbiology (Reading); 2008 May; 154(Pt 5):1390-1399. PubMed ID: 18451048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus.
    Homma M; Takekawa N; Fujiwara K; Hao Y; Onoue Y; Kojima S
    Genes Cells; 2022 Sep; 27(9):568-578. PubMed ID: 35842835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the GDP-bound state of the SRP GTPase FlhF.
    Dornes A; Mais CN; Bange G
    Acta Crystallogr F Struct Biol Commun; 2024 Mar; 80(Pt 3):53-58. PubMed ID: 38376823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG.
    Levenson R; Zhou H; Dahlquist FW
    Biochemistry; 2012 Jun; 51(25):5052-60. PubMed ID: 22670715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
    Kusumoto A; Kamisaka K; Yakushi T; Terashima H; Shinohara A; Homma M
    J Biochem; 2006 Jan; 139(1):113-21. PubMed ID: 16428326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the FliF-FliG complex from
    Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN
    J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.