These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38987595)

  • 1. In situ targeted base editing of bacteria in the mouse gut.
    Brödel AK; Charpenay LH; Galtier M; Fuche FJ; Terrasse R; Poquet C; Havránek J; Pignotti S; Krawczyk A; Arraou M; Prevot G; Spadoni D; Yarnall MTN; Hessel EM; Fernandez-Rodriguez J; Duportet X; Bikard D
    Nature; 2024 Aug; 632(8026):877-884. PubMed ID: 38987595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phages to the rescue: in situ editing of the gut microbiota.
    Kamm C; Beisel CL
    Trends Microbiol; 2024 Oct; 32(10):934-935. PubMed ID: 39277459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 4. Acquisition of Extended-Spectrum β-Lactamases by Escherichia coli and Klebsiella pneumoniae in Gut Microbiota of Pilgrims during the Hajj Pilgrimage of 2013.
    Leangapichart T; Dia NM; Olaitan AO; Gautret P; Brouqui P; Rolain JM
    Antimicrob Agents Chemother; 2016 May; 60(5):3222-6. PubMed ID: 26976866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome.
    Lam KN; Spanogiannopoulos P; Soto-Perez P; Alexander M; Nalley MJ; Bisanz JE; Nayak RR; Weakley AM; Yu FB; Turnbaugh PJ
    Cell Rep; 2021 Nov; 37(5):109930. PubMed ID: 34731631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome.
    Nath A; Bhattacharjee R; Nandi A; Sinha A; Kar S; Manoharan N; Mitra S; Mojumdar A; Panda PK; Patro S; Dutt A; Ahuja R; Verma SK; Suar M
    Biomed Pharmacother; 2022 Jul; 151():113122. PubMed ID: 35594718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scientists edit the genes of gut bacteria in living mice.
    Conroy G
    Nature; 2024 Jul; 631(8022):720-721. PubMed ID: 38987336
    [No Abstract]   [Full Text] [Related]  

  • 8. CRISPR-based engineering of phages for in situ bacterial base editing.
    Nethery MA; Hidalgo-Cantabrana C; Roberts A; Barrangou R
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2206744119. PubMed ID: 36343261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-replicative phage particles delivering CRISPR-Cas9 to target major blaCTX-M variants.
    Nittayasut N; Yata T; Chirakul S; Techakriengkrai N; Chanchaithong P
    PLoS One; 2024; 19(5):e0303555. PubMed ID: 38753729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing of a Specific Strain of Escherichia coli in the Mouse Gut Using Native Phages.
    Ping L; Zhuoya L; Pei J; Jingchao C; Yi L; Guosheng L; Hailei W
    Microbiol Spectr; 2022 Dec; 10(6):e0180422. PubMed ID: 36301104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 14. Genome Editing in Klebsiella pneumoniae Using CRISPR/Cas9 Technology.
    Wang Z; Wang Y; Ji Q
    Methods Mol Biol; 2022; 2479():105-117. PubMed ID: 35583735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid Vectors for
    Kan A; Gelfat I; Emani S; Praveschotinunt P; Joshi NS
    ACS Synth Biol; 2021 Jan; 10(1):94-106. PubMed ID: 33301298
    [No Abstract]   [Full Text] [Related]  

  • 16. Deaminase-mediated multiplex genome editing in Escherichia coli.
    Banno S; Nishida K; Arazoe T; Mitsunobu H; Kondo A
    Nat Microbiol; 2018 Apr; 3(4):423-429. PubMed ID: 29403014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition.
    Galtier M; De Sordi L; Maura D; Arachchi H; Volant S; Dillies MA; Debarbieux L
    Environ Microbiol; 2016 Jul; 18(7):2237-45. PubMed ID: 26971586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae.
    Chong Y; Ito Y; Kamimura T
    Infect Genet Evol; 2011 Oct; 11(7):1499-504. PubMed ID: 21689785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of CTX-M group I and group III β-lactamases produced by Escherichia coli and klebsiella pneumoniae in Lahore, Pakistan.
    Abrar S; Vajeeha A; Ul-Ain N; Riaz S
    Microb Pathog; 2017 Feb; 103():8-12. PubMed ID: 27956216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical and molecular epidemiology of healthcare-associated infections due to extended-spectrum beta-lactamase (ESBL)-producing strains of Escherichia coli and Klebsiella pneumoniae that harbor multiple ESBL genes.
    Apisarnthanarak A; Kiratisin P; Mundy LM
    Infect Control Hosp Epidemiol; 2008 Nov; 29(11):1026-34. PubMed ID: 18947321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.