These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 38988068)
1. Single-Cell RNA Sequencing Reveals Transcriptional Signatures and Cell-Cell Communication in Diabetic Retinopathy. Li M; Peng Y; Pang L; Wang L; Li J Endocr Metab Immune Disord Drug Targets; 2024; 24(14):1651-1663. PubMed ID: 38988068 [TBL] [Abstract][Full Text] [Related]
2. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Sun L; Wang R; Hu G; Liu H; Lv K; Duan Y; Shen N; Wu J; Hu J; Liu Y; Jin Q; Zhang F; Xu X Exp Eye Res; 2021 Sep; 210():108718. PubMed ID: 34364890 [TBL] [Abstract][Full Text] [Related]
3. MicroRNA-203a-3p regulates CoCl Zhang H; Li T; Cai X; Wang X; Li S; Xu B; Wu Q J Diabetes Complications; 2020 Oct; 34(10):107668. PubMed ID: 32660795 [TBL] [Abstract][Full Text] [Related]
4. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy. Dong L; Zhang Z; Liu X; Wang Q; Hong Y; Li X; Liu J J Mol Med (Berl); 2021 Feb; 99(2):225-240. PubMed ID: 33188599 [TBL] [Abstract][Full Text] [Related]
5. Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy. Zhang X; Zhang F; Xu X Clin Transl Med; 2024 Jul; 14(7):e1751. PubMed ID: 38946005 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy. Rangasamy S; Monickaraj F; Legendre C; Cabrera AP; Llaci L; Bilagody C; McGuire P; Das A Exp Eye Res; 2020 Jun; 195():108043. PubMed ID: 32376470 [TBL] [Abstract][Full Text] [Related]
7. Deciphering Immune-related Gene Signatures in Diabetic Retinopathy: Insights from Xia N; Zhao Q; Xu J; Cheng Z Curr Pharm Biotechnol; 2024; 25(15):2032-2045. PubMed ID: 38310446 [TBL] [Abstract][Full Text] [Related]
8. Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Wang N; Wei L; Liu D; Zhang Q; Xia X; Ding L; Xiong S Front Endocrinol (Lausanne); 2022; 13():867600. PubMed ID: 35574010 [TBL] [Abstract][Full Text] [Related]
9. Integrated single-cell and bulk RNA sequencing identifies POSTN as a potential biomarker and therapeutic target for rheumatoid arthritis. Li W; Li Z; Zou Z; Liu X; Li X Gene; 2024 Nov; 928():148798. PubMed ID: 39067546 [TBL] [Abstract][Full Text] [Related]
10. Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning. Wang J; Sun H; Mou L; Lu Y; Wu Z; Pu Z; Yang MM Front Endocrinol (Lausanne); 2024; 15():1382896. PubMed ID: 38800474 [TBL] [Abstract][Full Text] [Related]
11. Mesenchymal stem cells-derived exosomes alleviate senescence of retinal pigment epithelial cells by activating PI3K/AKT-Nrf2 signaling pathway in early diabetic retinopathy. Bai L; Wang Y Exp Cell Res; 2024 Aug; 441(2):114170. PubMed ID: 39019426 [TBL] [Abstract][Full Text] [Related]
12. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Gambhir D; Ananth S; Veeranan-Karmegam R; Elangovan S; Hester S; Jennings E; Offermanns S; Nussbaum JJ; Smith SB; Thangaraju M; Ganapathy V; Martin PM Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2208-17. PubMed ID: 22427566 [TBL] [Abstract][Full Text] [Related]
13. Identification of novel key molecular signatures in the pathogenesis of experimental diabetic retinopathy. Liu C; Zhu T; Zhang J; Wang J; Gao F; Ou Q; Jin C; Xu JY; Zhang J; Tian H; Xu GT; Lu L IUBMB Life; 2021 Nov; 73(11):1307-1324. PubMed ID: 34405947 [TBL] [Abstract][Full Text] [Related]
14. Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and Huang J; Zhou Q Front Immunol; 2022; 13():858972. PubMed ID: 35651615 [TBL] [Abstract][Full Text] [Related]
15. Single-cell RNA sequencing reveals the communications between tumor microenvironment components and tumor metastasis in osteosarcoma. Li J; Bai Y; Zhang H; Chen T; Shang G Front Immunol; 2024; 15():1445555. PubMed ID: 39324133 [TBL] [Abstract][Full Text] [Related]
16. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy. Liu Y; Li L; Pan N; Gu J; Qiu Z; Cao G; Dou Y; Dong L; Shuai J; Sang A Biochem Biophys Res Commun; 2021 Jul; 561():143-150. PubMed ID: 34023779 [TBL] [Abstract][Full Text] [Related]
17. Overexpressed Poldip2 Incurs Retinal Fibrosis via the TGF-β1/SMAD3 Signaling Pathway in Diabetic Retinopathy. Ji Z; Lin S; Gui S; Gao J; Cao F; Guan Y; Ni Q; Chen K; Tao L; Zhengxuan J Diabetes; 2024 Oct; 73(10):1742-1755. PubMed ID: 38968428 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals ubiquitin promotes pulmonary fibrosis in chronic pulmonary diseases. Wen Z; Ablimit A Sci Rep; 2024 Sep; 14(1):21195. PubMed ID: 39261509 [TBL] [Abstract][Full Text] [Related]
19. miR-200-3p suppresses cell proliferation and reduces apoptosis in diabetic retinopathy via blocking the TGF-β2/Smad pathway. Xue L; Xiong C; Li J; Ren Y; Zhang L; Jiao K; Chen C; Ding P Biosci Rep; 2020 Nov; 40(11):. PubMed ID: 33150936 [TBL] [Abstract][Full Text] [Related]
20. MiR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells. Fu SH; Lai MC; Zheng YY; Sun YW; Qiu JJ; Gui F; Zhang Q; Liu F Cell Death Dis; 2021 Jul; 12(7):708. PubMed ID: 34267179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]