These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38988651)

  • 1. The Conundrum of "Pair Sites" in Langmuir-Hinshelwood Reaction Kinetics in Heterogeneous Catalysis.
    Kiani D; Wachs IE
    ACS Catal; 2024 Jul; 14(13):10260-10270. PubMed ID: 38988651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic function of ferric oxide and effect of water on the formation of sulfur trioxide.
    Dai G; Wang X; You H; Wang Y; Shan Z; Tan H
    J Environ Manage; 2020 Jun; 264():110499. PubMed ID: 32250917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous stainless-steel fibers supported CuCeFeO
    Chen L; Zhang D; Chen Y; Liu F; Zhang J; Fu M; Wu J; Ye D
    Chemosphere; 2022 Mar; 291(Pt 2):132778. PubMed ID: 34742759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation.
    Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.
    Schauermann S; Freund HJ
    Acc Chem Res; 2015 Oct; 48(10):2775-82. PubMed ID: 26366783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors.
    Copéret C
    Acc Chem Res; 2019 Jun; 52(6):1697-1708. PubMed ID: 31150207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancements in low-temperature NH
    Ogugua PC; Wang E; Jinyang Z; Wang Q; Su H
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):84972-84998. PubMed ID: 37393212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts.
    Wachs IE; Jehng JM; Ueda W
    J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand.
    Ziemba M; Schilling C; Ganduglia-Pirovano MV; Hess C
    Acc Chem Res; 2021 Jul; 54(13):2884-2893. PubMed ID: 34137246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface and catalytic elucidation of Rh/gamma-Al2O3 catalysts during NO reduction by C3H8 in the presence of excess O2, H2O, and SO2.
    Pekridis G; Kaklidis N; Komvokis V; Athanasiou C; Konsolakis M; Yentekakis IV; Marnellos GE
    J Phys Chem A; 2010 Mar; 114(11):3969-80. PubMed ID: 19852457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.