These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 3898927)

  • 61. Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared.
    Roemer RB; Fletcher AM; Cetas TC
    Int J Radiat Oncol Biol Phys; 1985 Aug; 11(8):1539-50. PubMed ID: 4019278
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Increasing organ blood flow during cardiopulmonary bypass in pigs: comparison of dopamine and perfusion pressure.
    Mackay JH; Feerick AE; Woodson LC; Lin CY; Deyo DJ; Uchida T; Johnston WE
    Crit Care Med; 1995 Jun; 23(6):1090-8. PubMed ID: 7774221
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adaptive thermal modeling: a concept for measurement of local blood perfusion in heated tissues.
    Arkin H; Chen MM; Holmes KR
    J Biomech Eng; 1986 Nov; 108(4):306-11. PubMed ID: 3795874
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Local heating of human skin by millimeter waves: effect of blood flow.
    Alekseev SI; Radzievsky AA; Szabo I; Ziskin MC
    Bioelectromagnetics; 2005 Sep; 26(6):489-501. PubMed ID: 15931684
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A theoretical model for peripheral tissue heat transfer using the bioheat equation of Weinbaum and Jiji.
    Song WJ; Weinbaum S; Jiji LM
    J Biomech Eng; 1987 Feb; 109(1):72-8. PubMed ID: 3560884
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating.
    Kolios MC; Worthington AE; Holdsworth DW; Sherar MD; Hunt JW
    Phys Med Biol; 1999 Jun; 44(6):1479-97. PubMed ID: 10498518
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Standardization of a device for continuous observation of local flow in tissue.
    Vermariën H; Coremans J; Vereecke F; Bourgain RH
    Adv Exp Med Biol; 1986; 200():143-50. PubMed ID: 3799301
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Heat loss and blood flow during hyperthermia in normal canine brain. I: Empirical study and analysis.
    Lyons BE; Samulski TV; Cox RS; Fessenden P
    Int J Hyperthermia; 1989; 5(2):225-47. PubMed ID: 2926187
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermal fields and heat generation effects in tissue, awake and under halothane anesthesia.
    Trezek GJ; Jewett DL
    Aviat Space Environ Med; 1975 Mar; 46(3):290-5. PubMed ID: 1115732
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kidney temperature measurement. Thermistors for temperature measurement.
    Zát'ura F; Ramert B; Scheinar J; Reif R; Výborný K
    Acta Univ Palacki Olomuc Fac Med; 1994; 138():45-8. PubMed ID: 8714093
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Influence of desflurane, isoflurane and halothane on regional tissue perfusion in dogs.
    Hartman JC; Pagel PS; Proctor LT; Kampine JP; Schmeling WT; Warltier DC
    Can J Anaesth; 1992 Oct; 39(8):877-87. PubMed ID: 1288912
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Continuous quantitative local cerebral blood flow measurement. Calibration of thermal conductivity measurements by the hydrogen clearance method.
    Cusick JF; Myklebust J
    Stroke; 1980; 11(6):661-4. PubMed ID: 6451956
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cerebral blood flow and the thermal properties of the brain: a preliminary analysis.
    Salcman M; Moriyama E; Elsner HJ; Rossman H; Gettleman RA; Neuberth G; Corradino G
    J Neurosurg; 1989 Apr; 70(4):592-8. PubMed ID: 2926499
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Measurement of extravascular renal water by the thermal dye indicator dilution technique.
    Taylor SP; McAninch JW; Lewis FR
    J Urol; 1982 Jul; 128(1):209-12. PubMed ID: 7050416
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mathematical circulation model for the blood-flow-heat-loss relationship in the rat tail.
    Raman ER; Vanhuyse VJ; Roberts MF
    Phys Med Biol; 1987 Jul; 32(7):859-75. PubMed ID: 3615584
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue.
    Crezee J; Lagendijk JJ
    Phys Med Biol; 1990 Jul; 35(7):905-23. PubMed ID: 2385622
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Efficiency function: improvement of classical bioheat approach.
    Brinck H; Werner J
    J Appl Physiol (1985); 1994 Oct; 77(4):1617-22. PubMed ID: 7836177
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Application of respiratory heat exchange for the measurement of lung water.
    Serikov VB; Rumm MS; Kambara K; Bootomo MI; Osmack AR; Staub NC
    J Appl Physiol (1985); 1992 Mar; 72(3):944-53. PubMed ID: 1568990
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Measurement of cerebral blood flow by thermal diffusion using a flow probe with a Peltier stack].
    Yamagata S; Kikuchi H; Hashimoto K; Minamikawa J; Watanabe Y
    No To Shinkei; 1987 May; 39(5):479-84. PubMed ID: 3620218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.