These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38989559)

  • 1. MAGPIE: An interactive tool for visualizing and analyzing protein-ligand interactions.
    Rodriguez DCP; Weber KC; Sundberg B; Glasgow A
    Protein Sci; 2024 Aug; 33(8):e5027. PubMed ID: 38989559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand Binding Site Comparison - LiBiSCo - a web-based tool for analyzing interactions between proteins and ligands to explore amino acid specificity within active sites.
    Hassan S; Töpel M; Aronsson H
    Proteins; 2021 Nov; 89(11):1530-1540. PubMed ID: 34240464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandage: interactive visualization of de novo genome assemblies.
    Wick RR; Schultz MB; Zobel J; Holt KE
    Bioinformatics; 2015 Oct; 31(20):3350-2. PubMed ID: 26099265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fingeRNAt-A novel tool for high-throughput analysis of nucleic acid-ligand interactions.
    Szulc NA; Mackiewicz Z; Bujnicki JM; Stefaniak F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009783. PubMed ID: 35653385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hotspots API: A Python Package for the Detection of Small Molecule Binding Hotspots and Application to Structure-Based Drug Design.
    Curran PR; Radoux CJ; Smilova MD; Sykes RA; Higueruelo AP; Bradley AR; Marsden BD; Spring DR; Blundell TL; Leach AR; Pitt WR; Cole JC
    J Chem Inf Model; 2020 Apr; 60(4):1911-1916. PubMed ID: 32207937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of protein-small molecule interfaces.
    Allison B; Combs S; DeLuca S; Lemmon G; Mizoue L; Meiler J
    J Struct Biol; 2014 Feb; 185(2):193-202. PubMed ID: 23962892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational design of ligand-binding proteins with high affinity and selectivity.
    Tinberg CE; Khare SD; Dou J; Doyle L; Nelson JW; Schena A; Jankowski W; Kalodimos CG; Johnsson K; Stoddard BL; Baker D
    Nature; 2013 Sep; 501(7466):212-216. PubMed ID: 24005320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepDTAF: a deep learning method to predict protein-ligand binding affinity.
    Wang K; Zhou R; Li Y; Li M
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.
    Raschka S; Wolf AJ; Bemister-Buffington J; Kuhn LA
    J Comput Aided Mol Des; 2018 Apr; 32(4):511-528. PubMed ID: 29435780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4.
    Valdés-Tresanco MS; Valdés-Tresanco ME; Valiente PA; Moreno E
    Biol Direct; 2020 Sep; 15(1):12. PubMed ID: 32938494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PatchSearch: a web server for off-target protein identification.
    Rey J; Rasolohery I; Tufféry P; Guyon F; Moroy G
    Nucleic Acids Res; 2019 Jul; 47(W1):W365-W372. PubMed ID: 31131411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein-ligand fragment interaction, pathways and SNPs.
    Tanramluk D; Narupiyakul L; Akavipat R; Gong S; Charoensawan V
    Nucleic Acids Res; 2016 Jul; 44(W1):W514-21. PubMed ID: 27131358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. plotnineSeqSuite: a Python package for visualizing sequence data using ggplot2 style.
    Cao T; Li Q; Huang Y; Li A
    BMC Genomics; 2023 Oct; 24(1):585. PubMed ID: 37789265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taba: A Tool to Analyze the Binding Affinity.
    da Silva AD; Bitencourt-Ferreira G; de Azevedo WF
    J Comput Chem; 2020 Jan; 41(1):69-73. PubMed ID: 31410856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoMap: a tool for analyzing protein-ligand recognition using multiple ligand binding modes.
    Agostino M; Mancera RL; Ramsland PA; Yuriev E
    J Mol Graph Model; 2013 Mar; 40():80-90. PubMed ID: 23376613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Graphics Software for Interactive Docking and Visualization of Ligand-Protein Complementarity.
    Baskaran SG; Sharp TP; Sharp KA
    J Chem Inf Model; 2021 Mar; 61(3):1427-1443. PubMed ID: 33656873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding pocket optimization by computational protein design.
    Malisi C; Schumann M; Toussaint NC; Kageyama J; Kohlbacher O; Höcker B
    PLoS One; 2012; 7(12):e52505. PubMed ID: 23300688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.
    Laskowski RA; Swindells MB
    J Chem Inf Model; 2011 Oct; 51(10):2778-86. PubMed ID: 21919503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.