These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38989662)
1. In Vivo Synthetic Anticancer Approach by Resourcing Mouse Blood Albumin as a Biocompatible Artificial Metalloenzyme. Imai K; Muguruma K; Nakamura A; Kusakari Y; Chang TC; Pradipta AR; Tanaka K Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202411225. PubMed ID: 38989662 [TBL] [Abstract][Full Text] [Related]
2. Prodrug Activation by Gold Artificial Metalloenzyme-Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Chang TC; Vong K; Yamamoto T; Tanaka K Angew Chem Int Ed Engl; 2021 May; 60(22):12446-12454. PubMed ID: 33719151 [TBL] [Abstract][Full Text] [Related]
3. Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin. Yamada K; Muguruma K; Tanaka K Adv Carbohydr Chem Biochem; 2022; 82():11-34. PubMed ID: 36470648 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of acute toxicity of cancer-targeting albumin-based artificial metalloenzymes. Chang TC; Nasibullin I; Muguruma K; Kusakari Y; Shimoda T; Tanaka K Bioorg Med Chem; 2022 Nov; 73():117005. PubMed ID: 36150343 [TBL] [Abstract][Full Text] [Related]
5. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Lewis JC Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755 [TBL] [Abstract][Full Text] [Related]
6. Structural basis and anticancer properties of ruthenium-based drug complexed with human serum albumin. Zhang Y; Ho A; Yue J; Kong L; Zhou Z; Wu X; Yang F; Liang H Eur J Med Chem; 2014 Oct; 86():449-55. PubMed ID: 25200980 [TBL] [Abstract][Full Text] [Related]
7. An Antibody Engineered Metalloenzyme for Mediating Cell-Cell Communication and Activation of Immuno- and Chemotherapy. Liu Z; Liu Z; Sun M; Zhang W; Ren J; Qu X Nano Lett; 2023 Jul; 23(14):6424-6432. PubMed ID: 37395701 [TBL] [Abstract][Full Text] [Related]
8. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Himiyama T; Okamoto Y Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938 [TBL] [Abstract][Full Text] [Related]
9. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Liang AD; Serrano-Plana J; Peterson RL; Ward TR Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in the design and optimization of artificial metalloenzymes. Morita I; Ward TR Curr Opin Chem Biol; 2024 Aug; 81():102508. PubMed ID: 39098211 [TBL] [Abstract][Full Text] [Related]
11. Increasing the bioavailability of Ru(III) anticancer complexes through hydrophobic albumin interactions. Webb MI; Wu B; Jang T; Chard RA; Wong EW; Wong MQ; Yapp DT; Walsby CJ Chemistry; 2013 Dec; 19(50):17031-42. PubMed ID: 24203647 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of interactions between platinum-/ruthenium-based anticancer agents and human serum albumin: development of HSA carrier for metal-based drugs. Gou Y; Zhang Y; Yang F; Liang H Curr Pharm Des; 2015; 21(14):1848-61. PubMed ID: 25732554 [TBL] [Abstract][Full Text] [Related]
13. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372 [TBL] [Abstract][Full Text] [Related]
14. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Biggs GS; Klein OJ; Maslen SL; Skehel JM; Rutherford TJ; Freund SMV; Hollfelder F; Boss SR; Barker PD Angew Chem Int Ed Engl; 2021 May; 60(19):10919-10927. PubMed ID: 33616271 [TBL] [Abstract][Full Text] [Related]
17. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. DiPrimio DJ; Holland PL J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051 [TBL] [Abstract][Full Text] [Related]
18. Influence of the binding of reduced NAMI-A to human serum albumin on the pharmacokinetics and biological activity. Novohradský V; Bergamo A; Cocchietto M; Zajac J; Brabec V; Mestroni G; Sava G Dalton Trans; 2015 Jan; 44(4):1905-13. PubMed ID: 25489765 [TBL] [Abstract][Full Text] [Related]
19. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Yu L; Hua Z; Luo X; Zhao T; Liu Y Biochim Biophys Acta Rev Cancer; 2022 Jan; 1877(1):188655. PubMed ID: 34780933 [TBL] [Abstract][Full Text] [Related]
20. Novel auristatin E-based albumin-binding prodrugs with superior anticancer efficacy in vivo compared to the parent compound. Pes L; Koester SD; Magnusson JP; Chercheja S; Medda F; Abu Ajaj K; Rognan D; Daum S; Nollmann FI; Garcia Fernandez J; Perez Galan P; Walter HK; Warnecke A; Kratz F J Control Release; 2019 Feb; 296():81-92. PubMed ID: 30639692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]