These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38989800)

  • 1. Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data.
    Trewhella J; Vachette P; Larsen AH
    IUCrJ; 2024 Sep; 11(Pt 5):762-779. PubMed ID: 38989800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A round-robin approach provides a detailed assessment of biomolecular small-angle scattering data reproducibility and yields consensus curves for benchmarking.
    Trewhella J; Vachette P; Bierma J; Blanchet C; Brookes E; Chakravarthy S; Chatzimagas L; Cleveland TE; Cowieson N; Crossett B; Duff AP; Franke D; Gabel F; Gillilan RE; Graewert M; Grishaev A; Guss JM; Hammel M; Hopkins J; Huang Q; Hub JS; Hura GL; Irving TC; Jeffries CM; Jeong C; Kirby N; Krueger S; Martel A; Matsui T; Li N; Pérez J; Porcar L; Prangé T; Rajkovic I; Rocco M; Rosenberg DJ; Ryan TM; Seifert S; Sekiguchi H; Svergun D; Teixeira S; Thureau A; Weiss TM; Whitten AE; Wood K; Zuo X
    Acta Crystallogr D Struct Biol; 2022 Nov; 78(Pt 11):1315-1336. PubMed ID: 36322416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting solution scattering patterns with explicit-solvent molecular simulations.
    Chatzimagas L; Hub JS
    Methods Enzymol; 2022; 677():433-456. PubMed ID: 36410959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of coarse-grained molecular dynamics simulations and small-angle X-ray scattering experiments.
    Ekimoto T; Kokabu Y; Oroguchi T; Ikeguchi M
    Biophys Physicobiol; 2019; 16():377-390. PubMed ID: 31984192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scrutinizing the protein hydration shell from molecular dynamics simulations against consensus small-angle scattering data.
    Linse JB; Hub JS
    Commun Chem; 2023 Dec; 6(1):272. PubMed ID: 38086909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.
    Nguyen HT; Pabit SA; Meisburger SP; Pollack L; Case DA
    J Chem Phys; 2014 Dec; 141(22):22D508. PubMed ID: 25494779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitting high-resolution electron density maps from atomic models to solution scattering data.
    Chamberlain SR; Moore S; Grant TD
    Biophys J; 2023 Dec; 122(23):4567-4581. PubMed ID: 37924208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Small-Angle X-ray and Neutron Scattering Restraints in Molecular Dynamics Simulations.
    Chen PC; Shevchuk R; Strnad FM; Lorenz C; Karge L; Gilles R; Stadler AM; Hennig J; Hub JS
    J Chem Theory Comput; 2019 Aug; 15(8):4687-4698. PubMed ID: 31251056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate SAXS profile computation and its assessment by contrast variation experiments.
    Schneidman-Duhovny D; Hammel M; Tainer JA; Sali A
    Biophys J; 2013 Aug; 105(4):962-74. PubMed ID: 23972848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitting high-resolution electron density maps from atomic models to solution scattering data.
    Chamberlain SR; Moore S; Grant TD
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.
    Bardhan J; Park S; Makowski L
    J Appl Crystallogr; 2009 Oct; 42(Pt 5):932-943. PubMed ID: 21339902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the influence of the ion cloud on SAXS profiles of charged proteins.
    Ivanović MT; Bruetzel LK; Shevchuk R; Lipfert J; Hub JS
    Phys Chem Chem Phys; 2018 Nov; 20(41):26351-26361. PubMed ID: 30303199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics.
    Knight CJ; Hub JS
    Nucleic Acids Res; 2015 Jul; 43(W1):W225-30. PubMed ID: 25855813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data.
    Chen PC; Hub JS
    Biophys J; 2014 Jul; 107(2):435-447. PubMed ID: 25028885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the hydration layer around proteins: applications to small- and wide-angle x-ray scattering.
    Virtanen JJ; Makowski L; Sosnick TR; Freed KF
    Biophys J; 2011 Oct; 101(8):2061-9. PubMed ID: 22004761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell.
    Zheng W; Tekpinar M
    Biophys J; 2011 Dec; 101(12):2981-91. PubMed ID: 22208197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of solvent water to the solution X-ray scattering profile of proteins.
    Seki Y; Tomizawa T; Khechinashvili NN; Soda K
    Biophys Chem; 2002 Mar; 95(3):235-52. PubMed ID: 12062383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.