These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38990130)

  • 1. Concentration-dependent aggregation of methylene blue acting as a photoredox catalyst.
    Thompson BJ; Kumar A; Huxter VM
    Phys Chem Chem Phys; 2024 Jul; 26(29):19900-19907. PubMed ID: 38990130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights and kinetic analysis for the oxidative hydroxylation of arylboronic acids by visible light photoredox catalysis: a metal-free alternative.
    Pitre SP; McTiernan CD; Ismaili H; Scaiano JC
    J Am Chem Soc; 2013 Sep; 135(36):13286-9. PubMed ID: 23952147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of ozonation and ozonation catalyzed by Fe-loaded biochar as catalyst to remove methylene blue from aqueous solution.
    Babar M; Munir HMS; Nawaz A; Ramzan N; Azhar U; Sagir M; Tahir MS; Ikhlaq A; Mohammad Azmin SNH; Mubashir M; Khoo KS; Chew KW
    Chemosphere; 2022 Nov; 307(Pt 1):135738. PubMed ID: 35850223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic Photoredox Catalysis: Visible Light-Promoted Aerobic Hydroxylation of Arylboronic Acids with a Dirhodium(II) Catalyst.
    Yang HM; Liu ML; Tu JW; Miura-Stempel E; Campbell MG; Chuang GJ
    J Org Chem; 2020 Feb; 85(4):2040-2047. PubMed ID: 31886669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583.
    Kontos HA; Wei EP
    Stroke; 1993 Mar; 24(3):427-34. PubMed ID: 8095358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylene Blue Exciton States Steer Nonradiative Relaxation: Ultrafast Spectroscopy of Methylene Blue Dimer.
    Dean JC; Oblinsky DG; Rather SR; Scholes GD
    J Phys Chem B; 2016 Jan; 120(3):440-54. PubMed ID: 26781668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of superoxide anion and methylene blue in the reductive activation of indoleamine 2,3-dioxygenase by ascorbic acid or by xanthine oxidase-hypoxanthine.
    Sono M
    J Biol Chem; 1989 Jan; 264(3):1616-22. PubMed ID: 2536368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions.
    Mei L; Veleta JM; Gianetti TL
    J Am Chem Soc; 2020 Jul; 142(28):12056-12061. PubMed ID: 32602713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-light, photoredox catalyzed, oxidative hydroxylation of arylboronic acids using a metal-organic framework containing tetrakis(carboxyphenyl)porphyrin groups.
    Toyao T; Ueno N; Miyahara K; Matsui Y; Kim TH; Horiuchi Y; Ikeda H; Matsuoka M
    Chem Commun (Camb); 2015 Nov; 51(89):16103-6. PubMed ID: 26391908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the aggregation reactions and basic dye binding of tobacco mosaic virus. I. Variation of pH, particle asymmetry, acid and base titration results, irreversible binding of methylene blue, ultraviolet absorption, and extent of heat denaturation in tobacco mosaic virus solutions with time of standing.
    WELSH RS
    J Gen Physiol; 1956 Jan; 39(3):437-71. PubMed ID: 13286459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Resolved Spectroscopic Observation and Characterization of Water-Assisted Photoredox Reactions of Selected Aromatic Carbonyl Compounds.
    Ma J; Zhang X; Phillips DL
    Acc Chem Res; 2019 Mar; 52(3):726-737. PubMed ID: 30742408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue.
    Bradberry SM
    Toxicol Rev; 2003; 22(1):13-27. PubMed ID: 14579544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenylene-bridged bis(benzimidazolium) (BBIm
    Kodama T; Kubo M; Shinji W; Ohkubo K; Tobisu M
    Chem Sci; 2020 Oct; 11(44):12109-12117. PubMed ID: 34094425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis.
    Glaser F; Wenger OS
    JACS Au; 2022 Jun; 2(6):1488-1503. PubMed ID: 35783177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.