These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38990130)
21. Ultrafast Observation of a Photoredox Reaction Mechanism: Photoinitiation in Organocatalyzed Atom-Transfer Radical Polymerization. Koyama D; Dale HJA; Orr-Ewing AJ J Am Chem Soc; 2018 Jan; 140(4):1285-1293. PubMed ID: 29300460 [TBL] [Abstract][Full Text] [Related]
22. Mechanistic investigations of polyaza[7]helicene in photoredox and energy transfer catalysis. Rocker J; Zähringer TJB; Schmitz M; Opatz T; Kerzig C Beilstein J Org Chem; 2024; 20():1236-1245. PubMed ID: 38887585 [TBL] [Abstract][Full Text] [Related]
23. Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution. Görner H Photochem Photobiol Sci; 2008 Mar; 7(3):371-6. PubMed ID: 18389155 [TBL] [Abstract][Full Text] [Related]
24. Energy-funneling-based broadband visible-light-absorbing bodipy-C60 triads and tetrads as dual functional heavy-atom-free organic triplet photosensitizers for photocatalytic organic reactions. Huang L; Cui X; Therrien B; Zhao J Chemistry; 2013 Dec; 19(51):17472-82. PubMed ID: 24318269 [TBL] [Abstract][Full Text] [Related]
25. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Salaris SC; Babbs CF; Voorhees WD Biochem Pharmacol; 1991 Jul; 42(3):499-506. PubMed ID: 1650213 [TBL] [Abstract][Full Text] [Related]
26. How and when does an unusual and efficient photoredox reaction of 2-(1-hydroxyethyl) 9,10-anthraquinone occur? A combined time-resolved spectroscopic and DFT study. Ma J; Su T; Li MD; Du W; Huang J; Guan X; Phillips DL J Am Chem Soc; 2012 Sep; 134(36):14858-68. PubMed ID: 22909212 [TBL] [Abstract][Full Text] [Related]
27. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794 [TBL] [Abstract][Full Text] [Related]
28. Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: mechanism and kinetic approach. Valdés H; Tardón RF; Zaror CA Environ Technol; 2012 Sep; 33(16-18):1895-903. PubMed ID: 23240182 [TBL] [Abstract][Full Text] [Related]
29. Phosphorus corrole complexes: from property tuning to applications in photocatalysis and triplet-triplet annihilation upconversion. Mahammed A; Chen K; Vestfrid J; Zhao J; Gross Z Chem Sci; 2019 Aug; 10(29):7091-7103. PubMed ID: 31588277 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of oxygen radical formation by methylene blue, aspirin, or alpha-lipoic acid, prevents bacterial-lipopolysaccharide-induced fever. Riedel W; Lang U; Oetjen U; Schlapp U; Shibata M Mol Cell Biochem; 2003 May; 247(1-2):83-94. PubMed ID: 12841635 [TBL] [Abstract][Full Text] [Related]
31. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. Usacheva MN; Teichert MC; Biel MA J Photochem Photobiol B; 2003 Oct; 71(1-3):87-98. PubMed ID: 14705643 [TBL] [Abstract][Full Text] [Related]
32. Efficiency of the heterogeneous catalyst from electrocoagulation sludge for the removal of methylene blue in the presence of persulfate. Briton BGH; Adou KE; Assémian AS; Reinert L; Duclaux L; Adouby K; Yao BK; Koffi YGL J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(2):92-101. PubMed ID: 35129082 [TBL] [Abstract][Full Text] [Related]
33. Photo-oxidation and Photoreduction of Catechols by Chlorophyll Metabolites and Methylene Blue. Landino LM; Shuckrow ZT; Mooney AS; Lauderback CO; Lorenzi KE Chem Res Toxicol; 2022 Oct; 35(10):1851-1862. PubMed ID: 36044382 [TBL] [Abstract][Full Text] [Related]
34. Catalytic degradation of methylene blue by biosynthesized Au nanoparticles on titanium dioxide (Au@TiO Wang Y; Zhang T; Zhao Y; Lv T; Liu W; Liu X Environ Sci Pollut Res Int; 2023 Jan; 30(5):12307-12316. PubMed ID: 36107299 [TBL] [Abstract][Full Text] [Related]
36. Kinetics of Catalytic Oxidation of Methylene Blue with La/Cu Co-Doped in Attapulgite. Shang J; Zhang W; Dong Z; Fan HS Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903201 [TBL] [Abstract][Full Text] [Related]
37. Photocatalytic Mechanisms for Peroxymonosulfate Activation through the Removal of Methylene Blue: A Case Study. Rodríguez-Chueca J; Alonso E; Singh DN Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30641995 [TBL] [Abstract][Full Text] [Related]
38. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants. Fabry DC; Rueping M Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812 [TBL] [Abstract][Full Text] [Related]
39. Novel magnetic porous carbon spheres derived from chelating resin as a heterogeneous Fenton catalyst for the removal of methylene blue from aqueous solution. Ma J; Zhou L; Dan W; Zhang H; Shao Y; Bao C; Jing L J Colloid Interface Sci; 2015 May; 446():298-306. PubMed ID: 25681787 [TBL] [Abstract][Full Text] [Related]
40. Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst. Sohrabnezhad Sh Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):228-35. PubMed ID: 21733749 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]