These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38990552)

  • 1. The HD-ZIP IV transcription factor GLABRA2 acts as an activator for proanthocyanidin biosynthesis in Medicago truncatula seed coat.
    Gu Z; Zhou X; Li S; Pang Y; Xu Y; Zhang X; Zhang J; Jiang H; Lu Z; Wang H; Han L; Bai S; Zhou C
    Plant J; 2024 Sep; 119(5):2303-2315. PubMed ID: 38990552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.
    Jun JH; Liu C; Xiao X; Dixon RA
    Plant Cell; 2015 Oct; 27(10):2860-79. PubMed ID: 26410301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
    Pang Y; Peel GJ; Wright E; Wang Z; Dixon RA
    Plant Physiol; 2007 Nov; 145(3):601-15. PubMed ID: 17885080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum.
    Lu N; Roldan M; Dixon RA
    Planta; 2017 Aug; 246(2):323-335. PubMed ID: 28421329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.
    Li P; Chen B; Zhang G; Chen L; Dong Q; Wen J; Mysore KS; Zhao J
    New Phytol; 2016 May; 210(3):905-21. PubMed ID: 26725247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum.
    Singh S; Pal L; Rajput R; Chhatwal H; Singh N; Chattopadhyay D; Pandey A
    Planta; 2024 Jul; 260(2):38. PubMed ID: 38951258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis.
    Pang Y; Cheng X; Huhman DV; Ma J; Peel GJ; Yonekura-Sakakibara K; Saito K; Shen G; Sumner LW; Tang Y; Wen J; Yun J; Dixon RA
    Planta; 2013 Jul; 238(1):139-54. PubMed ID: 23592226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula.
    Verdier J; Zhao J; Torres-Jerez I; Ge S; Liu C; He X; Mysore KS; Dixon RA; Udvardi MK
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1766-71. PubMed ID: 22307644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
    Zhao J; Dixon RA
    Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development.
    Pang Y; Wenger JP; Saathoff K; Peel GJ; Wen J; Huhman D; Allen SN; Tang Y; Cheng X; Tadege M; Ratet P; Mysore KS; Sumner LW; Marks MD; Dixon RA
    Plant Physiol; 2009 Nov; 151(3):1114-29. PubMed ID: 19710231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.
    Li P; Dong Q; Ge S; He X; Verdier J; Li D; Zhao J
    Plant Biotechnol J; 2016 Jul; 14(7):1604-18. PubMed ID: 26806316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor.
    Xie DY; Sharma SB; Wright E; Wang ZY; Dixon RA
    Plant J; 2006 Mar; 45(6):895-907. PubMed ID: 16507081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max).
    Lu N; Rao X; Li Y; Jun JH; Dixon RA
    Plant Biotechnol J; 2021 Jul; 19(7):1429-1442. PubMed ID: 33539645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of stress responsive homeodomain leucine zipper transcription factors in Medicago truncatula.
    Li X; Hou Y; Zhang F; Li M; Yi F; Kang J; Yang Q; Long R
    Mol Biol Rep; 2022 May; 49(5):3569-3581. PubMed ID: 35118569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago.
    Peel GJ; Pang Y; Modolo LV; Dixon RA
    Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula.
    Liu C; Jun JH; Dixon RA
    Plant Physiol; 2014 Aug; 165(4):1424-1439. PubMed ID: 24948832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula.
    Pang Y; Peel GJ; Sharma SB; Tang Y; Dixon RA
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):14210-5. PubMed ID: 18772380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.
    Pang Y; Abeysinghe IS; He J; He X; Huhman D; Mewan KM; Sumner LW; Yun J; Dixon RA
    Plant Physiol; 2013 Mar; 161(3):1103-16. PubMed ID: 23288883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.
    Park KI; Hoshino A
    J Plant Physiol; 2012 Mar; 169(5):523-8. PubMed ID: 22209168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.