These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38990829)
21. Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Kajitani K; Tanaka Y; Arihiro K; Kataoka T; Ohdan H Breast Cancer Res Treat; 2012 Jul; 134(1):139-55. PubMed ID: 22261932 [TBL] [Abstract][Full Text] [Related]
22. Improving Cytotoxicity against Breast Cancer Cells by Using Mixed-Ligand Ruthenium(II) Complexes of 2,2'-Bipyridine, Amino Acid, and Nitric Oxide Derivatives as Potential Anticancer Agents. Gaspari APS; da Silva RS; Carneiro ZA; de Carvalho MR; Carvalho I; Pernomian L; Ferreira LP; Ramos LCB; de Souza GA; Formiga ALB Anticancer Agents Med Chem; 2021; 21(12):1602-1611. PubMed ID: 33081686 [TBL] [Abstract][Full Text] [Related]
23. Computational Exploration of Naturally Occurring Flavonoids as TGF-β Inhibitors in Breast Cancer: Insights from Docking and Molecular Dynamics Simulations and In-vitro Cytotoxicity Study. Shah U; Patel N; Patel M; Rohit S; Solanki N; Patel A; Patel S; Patel V; Patel R; Jawarkar RD Chem Biodivers; 2024 Jun; 21(6):e202301903. PubMed ID: 38623839 [TBL] [Abstract][Full Text] [Related]
24. Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn. Pandey R; Maurya R; Singh G; Sathiamoorthy B; Naik S Int Immunopharmacol; 2005 Mar; 5(3):541-53. PubMed ID: 15683850 [TBL] [Abstract][Full Text] [Related]
25. Chrysin, a natural and biologically active flavonoid suppresses tumor growth of mouse B16F10 melanoma cells: In vitro and In vivo study. Sassi A; Maatouk M; El Gueder D; Bzéouich IM; Abdelkefi-Ben Hatira S; Jemni-Yacoub S; Ghedira K; Chekir-Ghedira L Chem Biol Interact; 2018 Mar; 283():10-19. PubMed ID: 29352974 [TBL] [Abstract][Full Text] [Related]
26. Improved Anti-Cancer Effect of Curcumin on Breast Cancer Cells by Increasing the Activity of Natural Killer Cells. Lee HH; Cho H J Microbiol Biotechnol; 2018 Jun; 28(6):874-882. PubMed ID: 29642292 [TBL] [Abstract][Full Text] [Related]
27. IFNalpha2b stimulated release of IFNgamma differentially regulates T cell and NK cell mediated tumor cell cytotoxicity. Bose A; Baral R Immunol Lett; 2007 Jan; 108(1):68-77. PubMed ID: 17112599 [TBL] [Abstract][Full Text] [Related]
28. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy. Yang HG; Kang MC; Kim TY; Hwang I; Jin HT; Sung YC; Eom KS; Kim SW J Immunother Cancer; 2019 May; 7(1):138. PubMed ID: 31126350 [TBL] [Abstract][Full Text] [Related]
29. Exploring the Synergistic Effect of Sildenafil and Green Tea Polyphenols on Breast Cancer Stem Cell-like Cells and their Parental Cells: A Potential Novel Therapeutic Approach. Sharif MS; Mohseni HS; Khanavi M; Ghadami S; Jafarzadeh E; Tavajohi S; Aliebrahimi S; Ostad SN Anticancer Agents Med Chem; 2024 Feb; 24(4):304-315. PubMed ID: 37957912 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and Characterization of Chrysin-loaded PCL-PEG-PCL nanoparticle and its effect on breast cancer cell line. Eatemadi A; Daraee H; Aiyelabegan HT; Negahdari B; Rajeian B; Zarghami N Biomed Pharmacother; 2016 Dec; 84():1915-1922. PubMed ID: 27847208 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and biological evaluation of amino acid derivatives containing chrysin that induce apoptosis. Li Y; Zhang Q; He J; Yu W; Xiao J; Guo Y; Zhu X; Liu Y Nat Prod Res; 2021 Feb; 35(4):529-538. PubMed ID: 30897948 [TBL] [Abstract][Full Text] [Related]
32. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Carson WE; Parihar R; Lindemann MJ; Personeni N; Dierksheide J; Meropol NJ; Baselga J; Caligiuri MA Eur J Immunol; 2001 Oct; 31(10):3016-25. PubMed ID: 11592078 [TBL] [Abstract][Full Text] [Related]
33. Interleukin-21 increases direct cytotoxicity and IFN-γ production of ex vivo expanded NK cells towards breast cancer cells. Park YK; Shin DJ; Cho D; Kim SK; Lee JJ; Shin MG; Ryang DW; Lee JS; Park MH; Yoon JH; Jegal YJ Anticancer Res; 2012 Mar; 32(3):839-46. PubMed ID: 22399602 [TBL] [Abstract][Full Text] [Related]
34. Anti-tumor activity evaluation of novel chrysin-organotin compound in MCF-7 cells. Xuan HZ; Zhang JH; Wang YH; Fu CL; Zhang W Bioorg Med Chem Lett; 2016 Jan; 26(2):570-574. PubMed ID: 26670842 [TBL] [Abstract][Full Text] [Related]
35. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Sassi A; Mokdad Bzéouich I; Mustapha N; Maatouk M; Ghedira K; Chekir-Ghedira L Eur J Pharmacol; 2017 Oct; 812():91-96. PubMed ID: 28690190 [TBL] [Abstract][Full Text] [Related]
36. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells. Jiang XP; Elliott RL Anticancer Res; 2017 May; 37(5):2297-2305. PubMed ID: 28476795 [TBL] [Abstract][Full Text] [Related]
37. TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy. Lu H; Yang Y; Gad E; Inatsuka C; Wenner CA; Disis ML; Standish LJ Clin Cancer Res; 2011 Nov; 17(21):6742-53. PubMed ID: 21918170 [TBL] [Abstract][Full Text] [Related]
38. The flavonoid TL-2-8 induces cell death and immature mitophagy in breast cancer cells via abrogating the function of the AHA1/Hsp90 complex. Liu HJ; Jiang XX; Guo YZ; Sun FH; Kou XH; Bao Y; Zhang ZQ; Lin ZH; Ding TB; Jiang L; Lei XS; Yang YH Acta Pharmacol Sin; 2017 Oct; 38(10):1381-1393. PubMed ID: 28504248 [TBL] [Abstract][Full Text] [Related]
39. In vitro analysis of the proliferative capacity and cytotoxic effects of ex vivo induced natural killer cells, cytokine-induced killer cells, and gamma-delta T cells. Niu C; Jin H; Li M; Xu J; Xu D; Hu J; He H; Li W; Cui J BMC Immunol; 2015 Oct; 16():61. PubMed ID: 26458364 [TBL] [Abstract][Full Text] [Related]
40. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. Dunne J; Lynch S; O'Farrelly C; Todryk S; Hegarty JE; Feighery C; Doherty DG J Immunol; 2001 Sep; 167(6):3129-38. PubMed ID: 11544298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]