These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38991644)

  • 1. An unconventional approach for the efficient recovery of iron, cobalt, copper and silicon from copper slag.
    Wang Y; Zhang S; Wang L; Qin W; Han J
    J Hazard Mater; 2024 Sep; 476():135168. PubMed ID: 38991644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of copper converter slag for metal reclamation. Part I: Extraction and recovery of copper and cobalt.
    Deng T; Ling Y
    Waste Manag Res; 2007 Oct; 25(5):440-8. PubMed ID: 17985669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure Leaching of Copper Slag Flotation Tailings in Oxygenated Sulfuric Acid Media.
    Seyrankaya A
    ACS Omega; 2022 Oct; 7(40):35562-35574. PubMed ID: 36249399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of copper and cobalt from ancient slag.
    Bulut G
    Waste Manag Res; 2006 Apr; 24(2):118-24. PubMed ID: 16634226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils.
    Mahedi M; Cetin B; Dayioglu AY
    Waste Manag; 2019 Jul; 95():334-355. PubMed ID: 31351620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching of elements from cement activated fly ash and slag amended soils.
    Mahedi M; Cetin B
    Chemosphere; 2019 Nov; 235():565-574. PubMed ID: 31276869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-recovery of Mn and Fe from pyrolusite and copper slag with hydrometallurgy process: Kinetics and leaching mechanisms.
    Wang L; Chen Y; Xu Y; Ma Y; Du Y
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125877-125888. PubMed ID: 38008844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting.
    Zhou L; Peng T; Sun H; Wang S
    RSC Adv; 2022 Dec; 12(54):34990-35001. PubMed ID: 36540258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics and Kinetics of Sulfuric Acid Leaching Transformation of Rare Earth Fluoride Molten Salt Electrolysis Slag.
    Chen L; Xu J; Yu X; Tian L; Wang R; Xu Z
    Front Chem; 2021; 9():574722. PubMed ID: 33738275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts.
    Zheng H; Ding Y; Wen Q; Zhao S; He X; Zhang S; Dong C
    Sci Total Environ; 2022 Jan; 802():149830. PubMed ID: 34464795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics Evaluation and Verification of High-Sulfur Copper Slag Composite Agglomerate in Oxidation-Roasting-Separation-Leaching Process.
    Zhao K; Zhang X; Zhao W; Guo H; Zhang Q; Zhen C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching of iron from copper tailings by sulfuric acid: behavior, kinetics and mechanism.
    Tao L; Wang L; Yang K; Wang X; Chen L; Ning P
    RSC Adv; 2021 Jan; 11(10):5741-5752. PubMed ID: 35423117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese and iron recovery from groundwater treatment sludge by reductive acid leaching and hydroxide precipitation.
    Ong DC; de Luna MDG; Pingul-Ong SMB; Kan CC
    J Environ Manage; 2018 Oct; 223():723-730. PubMed ID: 29975900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the role of copper converter slag in simultaneously removing SO
    Bao J; Li K; Ning P; Wang C; Song X; Luo Y; Sun X
    J Environ Sci (China); 2021 Oct; 108():33-43. PubMed ID: 34465435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and chemical speciation of waste copper slag.
    Li Z; Ma G; Zhang X; Li J
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20012-20022. PubMed ID: 33410052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.
    Erust C; Akcil A
    Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective leaching of lead from lead smelter residues using EDTA.
    Palden T; Machiels L; Onghena B; Regadío M; Binnemans K
    RSC Adv; 2020 Nov; 10(69):42147-42156. PubMed ID: 35516733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv X; Bai C
    J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.