These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 3899170)
1. Interaction of DNA polymerase I of Escherichia coli with nucleotides. Antagonistic effects of single-stranded polynucleotide homopolymers. Muise O; Holler E Biochemistry; 1985 Jul; 24(14):3618-22. PubMed ID: 3899170 [TBL] [Abstract][Full Text] [Related]
2. Nuclear Overhauser effect studies of the conformations and binding site environments of deoxynucleoside triphosphate substrates bound to DNA polymerase I and its large fragment. Ferrin LJ; Mildvan AS Biochemistry; 1985 Nov; 24(24):6904-13. PubMed ID: 3907705 [TBL] [Abstract][Full Text] [Related]
3. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N; Pandey VN; Modak MJ Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555 [TBL] [Abstract][Full Text] [Related]
4. The effect of ATP on the incorporation of deoxyribonucleoside triphosphates by Escherichia coli DNA polymerase I. Spasokukotskaja T; Staub M; Sasvári-Székely M; Antoni F Biochim Biophys Acta; 1981 Dec; 656(2):140-6. PubMed ID: 7032596 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of error discrimination by Escherichia coli DNA polymerase I. el-Deiry WS; So AG; Downey KM Biochemistry; 1988 Jan; 27(2):546-53. PubMed ID: 3280024 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of selective inhibition of 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I by nucleoside 5'-monophosphates. Que BG; Downey KM; So AG Biochemistry; 1978 May; 17(9):1603-6. PubMed ID: 350269 [TBL] [Abstract][Full Text] [Related]
7. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I. Vilpo JA; Ridell J Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014 [TBL] [Abstract][Full Text] [Related]
8. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-. Lowe LG; Guengerich FP Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958 [TBL] [Abstract][Full Text] [Related]
9. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J Biochemistry; 1996 Oct; 35(39):12762-77. PubMed ID: 8841119 [TBL] [Abstract][Full Text] [Related]
10. Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I. Tabor S; Richardson CC Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4076-80. PubMed ID: 2657738 [TBL] [Abstract][Full Text] [Related]
11. Kinetic analysis of Escherichia coli deoxyribonucleic acid polymerase I. Travaglini EC; Mildvan AS; Loeb LA J Biol Chem; 1975 Nov; 250(22):8647-56. PubMed ID: 1102540 [TBL] [Abstract][Full Text] [Related]
12. DNA polymerase from mesophilic and thermophilic bacteria. III. Lack of fidelity in the replication of synthetic polydeoxyribonucleotides by DNA polymerase from Bacillus licheniformis and Bacillus stearothermophilus. Stenesh J; McGowan GR Biochim Biophys Acta; 1977 Mar; 475(1):32-41. PubMed ID: 849445 [TBL] [Abstract][Full Text] [Related]
13. Mutants affecting nucleotide recognition by T7 DNA polymerase. Donlin MJ; Johnson KA Biochemistry; 1994 Dec; 33(49):14908-17. PubMed ID: 7993917 [TBL] [Abstract][Full Text] [Related]
14. The efficiency of interaction of deoxyribonucleoside-5'-mono-, di- and triphosphates with the active centre of E. coli DNA polymerase I Klenow fragment. Doronin SV; Nevinsky GA; Malygina TO; Podust VN; Khomov VV; Lavrik OI FEBS Lett; 1989 Dec; 259(1):83-5. PubMed ID: 2689231 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms of manganese mutagenesis. El-Deiry WS; Downey KM; So AG Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7378-82. PubMed ID: 6095289 [TBL] [Abstract][Full Text] [Related]
16. Template-dependent variation in the relative fidelity of DNA polymerase I of Escherichia coli in the presence of Mg2+ versus Mn2+. Hillebrand GG; Beattie KL Nucleic Acids Res; 1984 Apr; 12(7):3173-83. PubMed ID: 6371712 [TBL] [Abstract][Full Text] [Related]
17. Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Overman LB; Bujalowski W; Lohman TM Biochemistry; 1988 Jan; 27(1):456-71. PubMed ID: 3280021 [TBL] [Abstract][Full Text] [Related]
18. NMR studies of conformations and interactions of substrates and ribonucleotide templates bound to the large fragment of DNA polymerase I. Ferrin LJ; Mildvan AS Biochemistry; 1986 Sep; 25(18):5131-45. PubMed ID: 3533145 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of noncomplementary nucleotides at high frequencies by ribodeoxyvirus DNA polymerases and Escherichia coli DNA polymerase I. Mizutani S; Temin HM Biochemistry; 1976 Apr; 15(7):1510-6. PubMed ID: 769823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]