These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38991852)

  • 1. Omada: robust clustering of transcriptomes through multiple testing.
    Kariotis S; Tan PF; Lu H; Rhodes CJ; Wilkins MR; Lawrie A; Wang D
    Gigascience; 2024 Jan; 13():. PubMed ID: 38991852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SC3: consensus clustering of single-cell RNA-seq data.
    Kiselev VY; Kirschner K; Schaub MT; Andrews T; Yiu A; Chandra T; Natarajan KN; Reik W; Barahona M; Green AR; Hemberg M
    Nat Methods; 2017 May; 14(5):483-486. PubMed ID: 28346451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis.
    Zhang Z; Liu Y; Xiao M; Wang K; Huang Y; Bian J; Yang R; Li F
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39487083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mbkmeans: Fast clustering for single cell data using mini-batch k-means.
    Hicks SC; Liu R; Ni Y; Purdom E; Risso D
    PLoS Comput Biol; 2021 Jan; 17(1):e1008625. PubMed ID: 33497379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks.
    Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Cell Types from Single-Cell Transcriptomic Data.
    Shekhar K; Menon V
    Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell RNA-seq clustering: datasets, models, and algorithms.
    Peng L; Tian X; Tian G; Xu J; Huang X; Weng Y; Yang J; Zhou L
    RNA Biol; 2020 Jun; 17(6):765-783. PubMed ID: 32116127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.
    Xu G; Strong MJ; Lacey MR; Baribault C; Flemington EK; Taylor CM
    PLoS One; 2014; 9(2):e89445. PubMed ID: 24586784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data.
    Förstner KU; Vogel J; Sharma CM
    Bioinformatics; 2014 Dec; 30(23):3421-3. PubMed ID: 25123900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scVSC: Deep Variational Subspace Clustering for Single-Cell Transcriptome Data.
    Wang Z; Wang H; Zhao J; Xia J; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1492-1503. PubMed ID: 38801694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.