These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis. Zhang Z; Liu Y; Xiao M; Wang K; Huang Y; Bian J; Yang R; Li F Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39487083 [TBL] [Abstract][Full Text] [Related]
4. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data. Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137 [TBL] [Abstract][Full Text] [Related]
5. mbkmeans: Fast clustering for single cell data using mini-batch k-means. Hicks SC; Liu R; Ni Y; Purdom E; Risso D PLoS Comput Biol; 2021 Jan; 17(1):e1008625. PubMed ID: 33497379 [TBL] [Abstract][Full Text] [Related]
6. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051 [TBL] [Abstract][Full Text] [Related]
7. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. Srinivasan S; Leshchyk A; Johnson NT; Korkin D RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794 [TBL] [Abstract][Full Text] [Related]
8. Identification of Cell Types from Single-Cell Transcriptomic Data. Shekhar K; Menon V Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819 [TBL] [Abstract][Full Text] [Related]
9. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data. Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP F1000Res; 2018; 7():1306. PubMed ID: 31316748 [TBL] [Abstract][Full Text] [Related]
18. scVSC: Deep Variational Subspace Clustering for Single-Cell Transcriptome Data. Wang Z; Wang H; Zhao J; Xia J; Zheng C IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1492-1503. PubMed ID: 38801694 [TBL] [Abstract][Full Text] [Related]
19. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
20. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]