These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38991926)

  • 1. Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics.
    Serrano K; Tedeschi F; Andersen SU; Scheller HV
    Trends Plant Sci; 2024 Jul; ():. PubMed ID: 38991926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rulebook for peptide control of legume-microbe endosymbioses.
    Roy S; Müller LM
    Trends Plant Sci; 2022 Sep; 27(9):870-889. PubMed ID: 35246381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics as a tool to monitor plant-microbe endosymbioses in the rhizosphere.
    Bestel-Corre G; Dumas-Gaudot E; Gianinazzi S
    Mycorrhiza; 2004 Feb; 14(1):1-10. PubMed ID: 14625704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses.
    Banasiak J; Jamruszka T; Murray JD; Jasiński M
    Plant Physiol; 2021 Dec; 187(4):2071-2091. PubMed ID: 34618047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts.
    Murfin KE; Lee MM; Klassen JL; McDonald BR; Larget B; Forst S; Stock SP; Currie CR; Goodrich-Blair H
    mBio; 2015 Jun; 6(3):e00076. PubMed ID: 26045536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria.
    Abdel-Lateif K; Bogusz D; Hocher V
    Plant Signal Behav; 2012 Jun; 7(6):636-41. PubMed ID: 22580697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.
    Gherbi H; Markmann K; Svistoonoff S; Estevan J; Autran D; Giczey G; Auguy F; Péret B; Laplaze L; Franche C; Parniske M; Bogusz D
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4928-32. PubMed ID: 18316735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis.
    Wang X; Feng H; Wang Y; Wang M; Xie X; Chang H; Wang L; Qu J; Sun K; He W; Wang C; Dai C; Chu Z; Tian C; Yu N; Zhang X; Liu H; Wang E
    Mol Plant; 2021 Mar; 14(3):503-516. PubMed ID: 33309942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant-microbe symbioses: new insights into common roots.
    Lima PT; Faria VG; Patraquim P; Ramos AC; Feijó JA; Sucena E
    Bioessays; 2009 Nov; 31(11):1233-44. PubMed ID: 19795404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development.
    Takeda N; Tsuzuki S; Suzaki T; Parniske M; Kawaguchi M
    Plant Cell Physiol; 2013 Oct; 54(10):1711-23. PubMed ID: 23926062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting mammalian reproduction with spatial transcriptomics.
    Zhang X; Cao Q; Rajachandran S; Grow EJ; Evans M; Chen H
    Hum Reprod Update; 2023 Nov; 29(6):794-810. PubMed ID: 37353907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Host-Microbe Single-Cell RNA Sequencing Reveals Ferroptosis-Associated Heterogeneity during Acinetobacter baumannii Infection.
    Meng H; Zhang T; Wang Z; Zhu Y; Yu Y; Chen H; Chen J; Wang F; Yu Y; Hua X; Wang Y
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202400538. PubMed ID: 38419141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symbiosis-inspired approaches to antibiotic discovery.
    Adnani N; Rajski SR; Bugni TS
    Nat Prod Rep; 2017 Jul; 34(7):784-814. PubMed ID: 28561849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Plant-microbe symbioses as an evolutionary continuum].
    Provorov NA
    Zh Obshch Biol; 2009; 70(1):10-34. PubMed ID: 19326852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities and challenges in the application of single-cell and spatial transcriptomics in plants.
    Chen C; Ge Y; Lu L
    Front Plant Sci; 2023; 14():1185377. PubMed ID: 37636094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Ca
    Barker DG; Chabaud M; Russo G; Genre A
    New Phytol; 2017 Apr; 214(2):533-538. PubMed ID: 27918078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tansley Review No. 116: Cyanobacterium-plant symbioses.
    Rai AN; Söderbäck E; Bergman B
    New Phytol; 2000 Sep; 147(3):449-481. PubMed ID: 33862930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realizing the Full Potential of Advanced Microscopy Approaches for Interrogating Plant-Microbe Interactions.
    Czymmek KJ; Duncan KE; Berg H
    Mol Plant Microbe Interact; 2023 Apr; 36(4):245-255. PubMed ID: 36947723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.